- 1.73.0 (latest)
- 1.72.0
- 1.71.1
- 1.70.0
- 1.69.0
- 1.68.0
- 1.67.1
- 1.66.0
- 1.65.0
- 1.63.0
- 1.62.0
- 1.60.0
- 1.59.0
- 1.58.0
- 1.57.0
- 1.56.0
- 1.55.0
- 1.54.1
- 1.53.0
- 1.52.0
- 1.51.0
- 1.50.0
- 1.49.0
- 1.48.0
- 1.47.0
- 1.46.0
- 1.45.0
- 1.44.0
- 1.43.0
- 1.39.0
- 1.38.1
- 1.37.0
- 1.36.4
- 1.35.0
- 1.34.0
- 1.33.1
- 1.32.0
- 1.31.1
- 1.30.1
- 1.29.0
- 1.28.1
- 1.27.1
- 1.26.1
- 1.25.0
- 1.24.1
- 1.23.0
- 1.22.1
- 1.21.0
- 1.20.0
- 1.19.1
- 1.18.3
- 1.17.1
- 1.16.1
- 1.15.1
- 1.14.0
- 1.13.1
- 1.12.1
- 1.11.0
- 1.10.0
- 1.9.0
- 1.8.1
- 1.7.1
- 1.6.2
- 1.5.0
- 1.4.3
- 1.3.0
- 1.2.0
- 1.1.1
- 1.0.1
- 0.9.0
- 0.8.0
- 0.7.1
- 0.6.0
- 0.5.1
- 0.4.0
- 0.3.1
GenerativeModel(
model_name: str,
*,
generation_config: typing.Optional[
typing.Union[
vertexai.generative_models._generative_models.GenerationConfig,
typing.Dict[str, typing.Any],
]
] = None,
safety_settings: typing.Optional[
typing.Union[
typing.List[google.cloud.aiplatform_v1beta1.types.content.SafetySetting],
typing.Dict[
google.cloud.aiplatform_v1beta1.types.content.HarmCategory,
google.cloud.aiplatform_v1beta1.types.content.SafetySetting.HarmBlockThreshold,
],
]
] = None,
tools: typing.Optional[
typing.List[vertexai.generative_models._generative_models.Tool]
] = None
)
Initializes GenerativeModel.
Usage:
model = GenerativeModel("gemini-pro")
print(model.generate_content("Hello"))
```
Parameter |
|
---|---|
Name | Description |
model_name |
str
Model Garden model resource name. |
Methods
count_tokens
count_tokens(
contents: typing.Union[
typing.List[vertexai.generative_models._generative_models.Content],
typing.List[typing.Dict[str, typing.Any]],
str,
vertexai.generative_models._generative_models.Image,
vertexai.generative_models._generative_models.Part,
typing.List[
typing.Union[
str,
vertexai.generative_models._generative_models.Image,
vertexai.generative_models._generative_models.Part,
]
],
]
) -> google.cloud.aiplatform_v1beta1.types.prediction_service.CountTokensResponse
Counts tokens.
Parameter | |
---|---|
Name | Description |
contents |
typing.Union[typing.List[Content], typing.List[typing.Dict[str, typing.Any]], str, Image, Part, typing.List[typing.Union[str, Image, Part]]]
Contents to send to the model. Supports either a list of Content objects (passing a multi-turn conversation) or a value that can be converted to a single Content object (passing a single message). Supports * str, Image, Part, * List[Union[str, Image, Part]], * List[Content] |
Returns | |
---|---|
Type | Description |
A CountTokensResponse object that has the following attributes |
total_tokens: The total number of tokens counted across all instances from the request. total_billable_characters: The total number of billable characters counted across all instances from the request. |
count_tokens_async
count_tokens_async(
contents: typing.Union[
typing.List[vertexai.generative_models._generative_models.Content],
typing.List[typing.Dict[str, typing.Any]],
str,
vertexai.generative_models._generative_models.Image,
vertexai.generative_models._generative_models.Part,
typing.List[
typing.Union[
str,
vertexai.generative_models._generative_models.Image,
vertexai.generative_models._generative_models.Part,
]
],
]
) -> google.cloud.aiplatform_v1beta1.types.prediction_service.CountTokensResponse
Counts tokens asynchronously.
Parameter | |
---|---|
Name | Description |
contents |
typing.Union[typing.List[Content], typing.List[typing.Dict[str, typing.Any]], str, Image, Part, typing.List[typing.Union[str, Image, Part]]]
Contents to send to the model. Supports either a list of Content objects (passing a multi-turn conversation) or a value that can be converted to a single Content object (passing a single message). Supports * str, Image, Part, * List[Union[str, Image, Part]], * List[Content] |
Returns | |
---|---|
Type | Description |
And awaitable for a CountTokensResponse object that has the following attributes |
total_tokens: The total number of tokens counted across all instances from the request. total_billable_characters: The total number of billable characters counted across all instances from the request. |
generate_content
generate_content(
contents: typing.Union[
typing.List[vertexai.generative_models._generative_models.Content],
typing.List[typing.Dict[str, typing.Any]],
str,
vertexai.generative_models._generative_models.Image,
vertexai.generative_models._generative_models.Part,
typing.List[
typing.Union[
str,
vertexai.generative_models._generative_models.Image,
vertexai.generative_models._generative_models.Part,
]
],
],
*,
generation_config: typing.Optional[
typing.Union[
vertexai.generative_models._generative_models.GenerationConfig,
typing.Dict[str, typing.Any],
]
] = None,
safety_settings: typing.Optional[
typing.Union[
typing.List[google.cloud.aiplatform_v1beta1.types.content.SafetySetting],
typing.Dict[
google.cloud.aiplatform_v1beta1.types.content.HarmCategory,
google.cloud.aiplatform_v1beta1.types.content.SafetySetting.HarmBlockThreshold,
],
]
] = None,
tools: typing.Optional[
typing.List[vertexai.generative_models._generative_models.Tool]
] = None,
stream: bool = False
) -> typing.Union[
vertexai.generative_models._generative_models.GenerationResponse,
typing.Iterable[vertexai.generative_models._generative_models.GenerationResponse],
]
Generates content.
Parameter | |
---|---|
Name | Description |
contents |
typing.Union[typing.List[Content], typing.List[typing.Dict[str, typing.Any]], str, Image, Part, typing.List[typing.Union[str, Image, Part]]]
Contents to send to the model. Supports either a list of Content objects (passing a multi-turn conversation) or a value that can be converted to a single Content object (passing a single message). Supports * str, Image, Part, * List[Union[str, Image, Part]], * List[Content] |
generate_content_async
generate_content_async(
contents: typing.Union[
typing.List[vertexai.generative_models._generative_models.Content],
typing.List[typing.Dict[str, typing.Any]],
str,
vertexai.generative_models._generative_models.Image,
vertexai.generative_models._generative_models.Part,
typing.List[
typing.Union[
str,
vertexai.generative_models._generative_models.Image,
vertexai.generative_models._generative_models.Part,
]
],
],
*,
generation_config: typing.Optional[
typing.Union[
vertexai.generative_models._generative_models.GenerationConfig,
typing.Dict[str, typing.Any],
]
] = None,
safety_settings: typing.Optional[
typing.Union[
typing.List[google.cloud.aiplatform_v1beta1.types.content.SafetySetting],
typing.Dict[
google.cloud.aiplatform_v1beta1.types.content.HarmCategory,
google.cloud.aiplatform_v1beta1.types.content.SafetySetting.HarmBlockThreshold,
],
]
] = None,
tools: typing.Optional[
typing.List[vertexai.generative_models._generative_models.Tool]
] = None,
stream: bool = False
) -> typing.Union[
vertexai.generative_models._generative_models.GenerationResponse,
typing.AsyncIterable[
vertexai.generative_models._generative_models.GenerationResponse
],
]
Generates content asynchronously.
Parameter | |
---|---|
Name | Description |
contents |
typing.Union[typing.List[Content], typing.List[typing.Dict[str, typing.Any]], str, Image, Part, typing.List[typing.Union[str, Image, Part]]]
Contents to send to the model. Supports either a list of Content objects (passing a multi-turn conversation) or a value that can be converted to a single Content object (passing a single message). Supports * str, Image, Part, * List[Union[str, Image, Part]], * List[Content] |
get_tuned_model
get_tuned_model(
tuned_model_name: str,
) -> vertexai.generative_models._generative_models._GenerativeModel
Loads the specified tuned language model.
Parameter | |
---|---|
Name | Description |
tuned_model_name |
str
A tuned model name returned by |
list_tuned_model_names
list_tuned_model_names() -> typing.Sequence[str]
Lists the names of tuned models.
start_chat
start_chat(
*,
history: typing.Optional[
typing.List[vertexai.generative_models._generative_models.Content]
] = None,
response_validation: bool = True
) -> vertexai.generative_models._generative_models.ChatSession
Creates a stateful chat session.
tune_model
tune_model(
training_data: typing.Union[str, tunable_models.pandas.core.frame.DataFrame],
*,
train_steps: typing.Optional[int] = None,
learning_rate_multiplier: typing.Optional[float] = None,
model_display_name: typing.Optional[str] = None,
tuning_evaluation_spec: typing.Optional[TuningEvaluationSpec] = None,
accelerator_type: typing.Optional[typing.Literal["TPU", "GPU"]] = None
) -> tunable_models._LanguageModelTuningJob
Tunes a model based on training data.
This method launches and returns an asynchronous model tuning job. Usage:
tuning_job = model.tune_model(...)
... do some other work
tuned_model = tuning_job.get_tuned_model() # Blocks until tuning is complete
```
Parameter | |
---|---|
Name | Description |
training_data |
typing.Union[str, tunable_models.pandas.core.frame.DataFrame]
A Pandas DataFrame or a URI pointing to data in JSON lines format. The dataset schema is model-specific. See https://cloud.google.com/vertex-ai/docs/generative-ai/models/tune-models#dataset_format |
Exceptions | |
---|---|
Type | Description |
ValueError |
If the "tuning_job_location" value is not supported |
ValueError |
If the "tuned_model_location" value is not supported |
RuntimeError |
If the model does not support tuning |