- 1.73.0 (latest)
- 1.72.0
- 1.71.1
- 1.70.0
- 1.69.0
- 1.68.0
- 1.67.1
- 1.66.0
- 1.65.0
- 1.63.0
- 1.62.0
- 1.60.0
- 1.59.0
- 1.58.0
- 1.57.0
- 1.56.0
- 1.55.0
- 1.54.1
- 1.53.0
- 1.52.0
- 1.51.0
- 1.50.0
- 1.49.0
- 1.48.0
- 1.47.0
- 1.46.0
- 1.45.0
- 1.44.0
- 1.43.0
- 1.39.0
- 1.38.1
- 1.37.0
- 1.36.4
- 1.35.0
- 1.34.0
- 1.33.1
- 1.32.0
- 1.31.1
- 1.30.1
- 1.29.0
- 1.28.1
- 1.27.1
- 1.26.1
- 1.25.0
- 1.24.1
- 1.23.0
- 1.22.1
- 1.21.0
- 1.20.0
- 1.19.1
- 1.18.3
- 1.17.1
- 1.16.1
- 1.15.1
- 1.14.0
- 1.13.1
- 1.12.1
- 1.11.0
- 1.10.0
- 1.9.0
- 1.8.1
- 1.7.1
- 1.6.2
- 1.5.0
- 1.4.3
- 1.3.0
- 1.2.0
- 1.1.1
- 1.0.1
- 0.9.0
- 0.8.0
- 0.7.1
- 0.6.0
- 0.5.1
- 0.4.0
- 0.3.1
TextGenerationModel(model_id: str, endpoint_name: typing.Optional[str] = None)
Creates a LanguageModel.
This constructor should not be called directly.
Use LanguageModel.from_pretrained(model_name=...)
instead.
Parameters |
|
---|---|
Name | Description |
model_id |
str
Identifier of a Vertex LLM. Example: "text-bison@001" |
endpoint_name |
typing.Optional[str]
Vertex Endpoint resource name for the model |
Methods
batch_predict
batch_predict(
*,
dataset: typing.Union[str, typing.List[str]],
destination_uri_prefix: str,
model_parameters: typing.Optional[typing.Dict] = None
) -> google.cloud.aiplatform.jobs.BatchPredictionJob
Starts a batch prediction job with the model.
Exceptions | |
---|---|
Type | Description |
ValueError |
When source or destination URI is not supported. |
from_pretrained
from_pretrained(model_name: str) -> vertexai._model_garden._model_garden_models.T
Loads a _ModelGardenModel.
Parameter | |
---|---|
Name | Description |
model_name |
str
Name of the model. |
Exceptions | |
---|---|
Type | Description |
ValueError |
If model_name is unknown. |
ValueError |
If model does not support this class. |
get_tuned_model
get_tuned_model(
tuned_model_name: str,
) -> vertexai.language_models._language_models._LanguageModel
Loads the specified tuned language model.
list_tuned_model_names
list_tuned_model_names() -> typing.Sequence[str]
Lists the names of tuned models.
predict
predict(
prompt: str,
*,
max_output_tokens: typing.Optional[int] = 128,
temperature: typing.Optional[float] = None,
top_k: typing.Optional[int] = None,
top_p: typing.Optional[float] = None,
stop_sequences: typing.Optional[typing.List[str]] = None,
candidate_count: typing.Optional[int] = None,
grounding_source: typing.Optional[
typing.Union[
vertexai.language_models._language_models.WebSearch,
vertexai.language_models._language_models.VertexAISearch,
vertexai.language_models._language_models.InlineContext,
]
] = None,
logprobs: typing.Optional[int] = None,
presence_penalty: typing.Optional[float] = None,
frequency_penalty: typing.Optional[float] = None,
logit_bias: typing.Optional[typing.Dict[int, float]] = None
) -> vertexai.language_models.MultiCandidateTextGenerationResponse
Gets model response for a single prompt.
Parameter | |
---|---|
Name | Description |
prompt |
str
Question to ask the model. |
predict_async
predict_async(
prompt: str,
*,
max_output_tokens: typing.Optional[int] = 128,
temperature: typing.Optional[float] = None,
top_k: typing.Optional[int] = None,
top_p: typing.Optional[float] = None,
stop_sequences: typing.Optional[typing.List[str]] = None,
candidate_count: typing.Optional[int] = None,
grounding_source: typing.Optional[
typing.Union[
vertexai.language_models._language_models.WebSearch,
vertexai.language_models._language_models.VertexAISearch,
vertexai.language_models._language_models.InlineContext,
]
] = None,
logprobs: typing.Optional[int] = None,
presence_penalty: typing.Optional[float] = None,
frequency_penalty: typing.Optional[float] = None,
logit_bias: typing.Optional[typing.Dict[int, float]] = None
) -> vertexai.language_models.MultiCandidateTextGenerationResponse
Asynchronously gets model response for a single prompt.
Parameter | |
---|---|
Name | Description |
prompt |
str
Question to ask the model. |
predict_streaming
predict_streaming(
prompt: str,
*,
max_output_tokens: int = 128,
temperature: typing.Optional[float] = None,
top_k: typing.Optional[int] = None,
top_p: typing.Optional[float] = None,
stop_sequences: typing.Optional[typing.List[str]] = None,
logprobs: typing.Optional[int] = None,
presence_penalty: typing.Optional[float] = None,
frequency_penalty: typing.Optional[float] = None,
logit_bias: typing.Optional[typing.Dict[int, float]] = None
) -> typing.Iterator[vertexai.language_models.TextGenerationResponse]
Gets a streaming model response for a single prompt.
The result is a stream (generator) of partial responses.
Parameter | |
---|---|
Name | Description |
prompt |
str
Question to ask the model. |
predict_streaming_async
predict_streaming_async(
prompt: str,
*,
max_output_tokens: int = 128,
temperature: typing.Optional[float] = None,
top_k: typing.Optional[int] = None,
top_p: typing.Optional[float] = None,
stop_sequences: typing.Optional[typing.List[str]] = None,
logprobs: typing.Optional[int] = None,
presence_penalty: typing.Optional[float] = None,
frequency_penalty: typing.Optional[float] = None,
logit_bias: typing.Optional[typing.Dict[int, float]] = None
) -> typing.AsyncIterator[vertexai.language_models.TextGenerationResponse]
Asynchronously gets a streaming model response for a single prompt.
The result is a stream (generator) of partial responses.
Parameter | |
---|---|
Name | Description |
prompt |
str
Question to ask the model. |
tune_model
tune_model(
training_data: typing.Union[str, pandas.core.frame.DataFrame],
*,
train_steps: typing.Optional[int] = None,
learning_rate_multiplier: typing.Optional[float] = None,
tuning_job_location: typing.Optional[str] = None,
tuned_model_location: typing.Optional[str] = None,
model_display_name: typing.Optional[str] = None,
tuning_evaluation_spec: typing.Optional[TuningEvaluationSpec] = None,
accelerator_type: typing.Optional[typing.Literal["TPU", "GPU"]] = None
) -> _LanguageModelTuningJob
Tunes a model based on training data.
This method launches and returns an asynchronous model tuning job. Usage:
tuning_job = model.tune_model(...)
... do some other work
tuned_model = tuning_job.get_tuned_model() # Blocks until tuning is complete
Parameter | |
---|---|
Name | Description |
training_data |
typing.Union[str, pandas.core.frame.DataFrame]
A Pandas DataFrame or a URI pointing to data in JSON lines format. The dataset schema is model-specific. See https://cloud.google.com/vertex-ai/docs/generative-ai/models/tune-models#dataset_format |
Exceptions | |
---|---|
Type | Description |
ValueError |
If the "tuning_job_location" value is not supported |
ValueError |
If the "tuned_model_location" value is not supported |
RuntimeError |
If the model does not support tuning |
tune_model_rlhf
tune_model_rlhf(
*,
prompt_data: typing.Union[str, pandas.core.frame.DataFrame],
preference_data: typing.Union[str, pandas.core.frame.DataFrame],
model_display_name: typing.Optional[str] = None,
prompt_sequence_length: typing.Optional[int] = None,
target_sequence_length: typing.Optional[int] = None,
reward_model_learning_rate_multiplier: typing.Optional[float] = None,
reinforcement_learning_rate_multiplier: typing.Optional[float] = None,
reward_model_train_steps: typing.Optional[int] = None,
reinforcement_learning_train_steps: typing.Optional[int] = None,
kl_coeff: typing.Optional[float] = None,
default_context: typing.Optional[str] = None,
tuning_job_location: typing.Optional[str] = None,
tuning_evaluation_spec: typing.Optional[TuningEvaluationSpec] = None
) -> _LanguageModelTuningJob
Tunes a model using reinforcement learning from human feedback.
This method launches and returns an asynchronous model tuning job. Usage:
tuning_job = model.tune_model_rlhf(...)
... do some other work
tuned_model = tuning_job.get_tuned_model() # Blocks until tuning is complete
Exceptions | |
---|---|
Type | Description |
ValueError |
If the "tuning_job_location" value is not supported |
RuntimeError |
If the model does not support tuning |