Package language_models (1.38.0)

API documentation for language_models package.

Classes

ChatMessage

A chat message.

ChatModel

ChatModel represents a language model that is capable of chat.

Examples::

chat_model = ChatModel.from_pretrained("chat-bison@001")

chat = chat_model.start_chat(
    context="My name is Ned. You are my personal assistant. My favorite movies are Lord of the Rings and Hobbit.",
    examples=[
        InputOutputTextPair(
            input_text="Who do you work for?",
            output_text="I work for Ned.",
        ),
        InputOutputTextPair(
            input_text="What do I like?",
            output_text="Ned likes watching movies.",
        ),
    ],
    temperature=0.3,
)

chat.send_message("Do you know any cool events this weekend?")

ChatSession

ChatSession represents a chat session with a language model.

Within a chat session, the model keeps context and remembers the previous conversation.

CodeChatModel

CodeChatModel represents a model that is capable of completing code.

.. rubric:: Examples

code_chat_model = CodeChatModel.from_pretrained("codechat-bison@001")

code_chat = code_chat_model.start_chat( context="I'm writing a large-scale enterprise application.", max_output_tokens=128, temperature=0.2, )

code_chat.send_message("Please help write a function to calculate the min of two numbers")

CodeChatSession

CodeChatSession represents a chat session with code chat language model.

Within a code chat session, the model keeps context and remembers the previous converstion.

CodeGenerationModel

Creates a LanguageModel.

This constructor should not be called directly. Use LanguageModel.from_pretrained(model_name=...) instead.

GroundingSource

GroundingSource()

InputOutputTextPair

InputOutputTextPair represents a pair of input and output texts.

TextEmbedding

Text embedding vector and statistics.

TextEmbeddingInput

Structural text embedding input.

TextEmbeddingModel

TextEmbeddingModel class calculates embeddings for the given texts.

Examples::

# Getting embedding:
model = TextEmbeddingModel.from_pretrained("textembedding-gecko@001")
embeddings = model.get_embeddings(["What is life?"])
for embedding in embeddings:
    vector = embedding.values
    print(len(vector))

TextGenerationModel

Creates a LanguageModel.

This constructor should not be called directly. Use LanguageModel.from_pretrained(model_name=...) instead.

TextGenerationResponse

TextGenerationResponse represents a response of a language model. .. attribute:: text

The generated text

:type: str

Modules

_language_models

Classes for working with language models.