- 1.73.0 (latest)
- 1.72.0
- 1.71.1
- 1.70.0
- 1.69.0
- 1.68.0
- 1.67.1
- 1.66.0
- 1.65.0
- 1.63.0
- 1.62.0
- 1.60.0
- 1.59.0
- 1.58.0
- 1.57.0
- 1.56.0
- 1.55.0
- 1.54.1
- 1.53.0
- 1.52.0
- 1.51.0
- 1.50.0
- 1.49.0
- 1.48.0
- 1.47.0
- 1.46.0
- 1.45.0
- 1.44.0
- 1.43.0
- 1.39.0
- 1.38.1
- 1.37.0
- 1.36.4
- 1.35.0
- 1.34.0
- 1.33.1
- 1.32.0
- 1.31.1
- 1.30.1
- 1.29.0
- 1.28.1
- 1.27.1
- 1.26.1
- 1.25.0
- 1.24.1
- 1.23.0
- 1.22.1
- 1.21.0
- 1.20.0
- 1.19.1
- 1.18.3
- 1.17.1
- 1.16.1
- 1.15.1
- 1.14.0
- 1.13.1
- 1.12.1
- 1.11.0
- 1.10.0
- 1.9.0
- 1.8.1
- 1.7.1
- 1.6.2
- 1.5.0
- 1.4.3
- 1.3.0
- 1.2.0
- 1.1.1
- 1.0.1
- 0.9.0
- 0.8.0
- 0.7.1
- 0.6.0
- 0.5.1
- 0.4.0
- 0.3.1
API documentation for language_models
package.
Classes
ChatMessage
A chat message.
Author of the message.
ChatModel
ChatModel represents a language model that is capable of chat.
Examples::
chat_model = ChatModel.from_pretrained("chat-bison@001")
chat = chat_model.start_chat(
context="My name is Ned. You are my personal assistant. My favorite movies are Lord of the Rings and Hobbit.",
examples=[
InputOutputTextPair(
input_text="Who do you work for?",
output_text="I work for Ned.",
),
InputOutputTextPair(
input_text="What do I like?",
output_text="Ned likes watching movies.",
),
],
temperature=0.3,
)
chat.send_message("Do you know any cool events this weekend?")
ChatSession
ChatSession represents a chat session with a language model.
Within a chat session, the model keeps context and remembers the previous conversation.
CodeChatModel
CodeChatModel represents a model that is capable of completing code.
.. rubric:: Examples
code_chat_model = CodeChatModel.from_pretrained("codechat-bison@001")
code_chat = code_chat_model.start_chat( context="I'm writing a large-scale enterprise application.", max_output_tokens=128, temperature=0.2, )
code_chat.send_message("Please help write a function to calculate the min of two numbers")
CodeChatSession
CodeChatSession represents a chat session with code chat language model.
Within a code chat session, the model keeps context and remembers the previous converstion.
CodeGenerationModel
A language model that generates code.
.. rubric:: Examples
Getting answers:
generation_model = CodeGenerationModel.from_pretrained("code-bison@001") print(generation_model.predict( prefix="Write a function that checks if a year is a leap year.", ))
completion_model = CodeGenerationModel.from_pretrained("code-gecko@001") print(completion_model.predict( prefix="def reverse_string(s):", ))
InputOutputTextPair
InputOutputTextPair represents a pair of input and output texts.
TextEmbedding
Text embedding vector and statistics.
TextEmbeddingInput
Structural text embedding input.
The name of the downstream task the embeddings will be used for. Valid values: RETRIEVAL_QUERY Specifies the given text is a query in a search/retrieval setting. RETRIEVAL_DOCUMENT Specifies the given text is a document from the corpus being searched. SEMANTIC_SIMILARITY Specifies the given text will be used for STS. CLASSIFICATION Specifies that the given text will be classified. CLUSTERING Specifies that the embeddings will be used for clustering.
TextEmbeddingModel
TextEmbeddingModel class calculates embeddings for the given texts.
Examples::
# Getting embedding:
model = TextEmbeddingModel.from_pretrained("textembedding-gecko@001")
embeddings = model.get_embeddings(["What is life?"])
for embedding in embeddings:
vector = embedding.values
print(len(vector))
TextGenerationModel
Creates a LanguageModel.
This constructor should not be called directly.
Use LanguageModel.from_pretrained(model_name=...)
instead.
TextGenerationResponse
TextGenerationResponse represents a response of a language model. .. attribute:: text
The generated text
Scores for safety attributes. Learn more about the safety attributes here: https://cloud.google.com/vertex-ai/docs/generative-ai/learn/responsible-ai#safety_attribute_descriptions
Modules
_language_models
Classes for working with language models.