- 1.71.0 (latest)
- 1.70.0
- 1.69.0
- 1.68.0
- 1.67.1
- 1.66.0
- 1.65.0
- 1.63.0
- 1.62.0
- 1.60.0
- 1.59.0
- 1.58.0
- 1.57.0
- 1.56.0
- 1.55.0
- 1.54.1
- 1.53.0
- 1.52.0
- 1.51.0
- 1.50.0
- 1.49.0
- 1.48.0
- 1.47.0
- 1.46.0
- 1.45.0
- 1.44.0
- 1.43.0
- 1.39.0
- 1.38.1
- 1.37.0
- 1.36.4
- 1.35.0
- 1.34.0
- 1.33.1
- 1.32.0
- 1.31.1
- 1.30.1
- 1.29.0
- 1.28.1
- 1.27.1
- 1.26.1
- 1.25.0
- 1.24.1
- 1.23.0
- 1.22.1
- 1.21.0
- 1.20.0
- 1.19.1
- 1.18.3
- 1.17.1
- 1.16.1
- 1.15.1
- 1.14.0
- 1.13.1
- 1.12.1
- 1.11.0
- 1.10.0
- 1.9.0
- 1.8.1
- 1.7.1
- 1.6.2
- 1.5.0
- 1.4.3
- 1.3.0
- 1.2.0
- 1.1.1
- 1.0.1
- 0.9.0
- 0.8.0
- 0.7.1
- 0.6.0
- 0.5.1
- 0.4.0
- 0.3.1
AutoMLTextTrainingJob(
display_name: str,
prediction_type: str,
multi_label: bool = False,
sentiment_max: int = 10,
project: Optional[str] = None,
location: Optional[str] = None,
credentials: Optional[google.auth.credentials.Credentials] = None,
training_encryption_spec_key_name: Optional[str] = None,
model_encryption_spec_key_name: Optional[str] = None,
)
Constructs a AutoML Text Training Job.
Parameters
Name | Description |
display_name |
str
Required. The user-defined name of this TrainingPipeline. |
prediction_type |
str
The type of prediction the Model is to produce, one of: "classification" - A classification model analyzes text data and returns a list of categories that apply to the text found in the data. Vertex AI offers both single-label and multi-label text classification models. "extraction" - An entity extraction model inspects text data for known entities referenced in the data and labels those entities in the text. "sentiment" - A sentiment analysis model inspects text data and identifies the prevailing emotional opinion within it, especially to determine a writer's attitude as positive, negative, or neutral. |
multi_label |
bool
Required and only applicable for text classification task. If false, a single-label (multi-class) Model will be trained (i.e. assuming that for each text snippet just up to one annotation may be applicable). If true, a multi-label Model will be trained (i.e. assuming that for each text snippet multiple annotations may be applicable). |
sentiment_max |
int
Required and only applicable for sentiment task. A sentiment is expressed as an integer ordinal, where higher value means a more positive sentiment. The range of sentiments that will be used is between 0 and sentimentMax (inclusive on both ends), and all the values in the range must be represented in the dataset before a model can be created. Only the Annotations with this sentimentMax will be used for training. sentimentMax value must be between 1 and 10 (inclusive). |
project |
str
Optional. Project to run training in. Overrides project set in aiplatform.init. |
location |
str
Optional. Location to run training in. Overrides location set in aiplatform.init. |
credentials |
auth_credentials.Credentials
Optional. Custom credentials to use to run call training service. Overrides credentials set in aiplatform.init. |
training_encryption_spec_key_name |
Optional[str]
Optional. The Cloud KMS resource identifier of the customer managed encryption key used to protect the training pipeline. Has the form: |
model_encryption_spec_key_name |
Optional[str]
Optional. The Cloud KMS resource identifier of the customer managed encryption key used to protect the model. Has the form: |
Inheritance
builtins.object > google.cloud.aiplatform.base.VertexAiResourceNoun > builtins.object > google.cloud.aiplatform.base.FutureManager > google.cloud.aiplatform.base.VertexAiResourceNounWithFutureManager > google.cloud.aiplatform.training_jobs._TrainingJob > AutoMLTextTrainingJobMethods
run
run(
dataset: google.cloud.aiplatform.datasets.text_dataset.TextDataset,
training_fraction_split: float = 0.8,
validation_fraction_split: float = 0.1,
test_fraction_split: float = 0.1,
model_display_name: Optional[str] = None,
sync: bool = True,
)
Runs the training job and returns a model.
Data fraction splits:
Any of training_fraction_split
, validation_fraction_split
and
test_fraction_split
may optionally be provided, they must sum to up to 1. If
the provided ones sum to less than 1, the remainder is assigned to sets as
decided by Vertex AI. If none of the fractions are set, by default roughly 80%
of data will be used for training, 10% for validation, and 10% for test.
Name | Description |
dataset |
datasets.TextDataset
Required. The dataset within the same Project from which data will be used to train the Model. The Dataset must use schema compatible with Model being trained, and what is compatible should be described in the used TrainingPipeline's [training_task_definition] [google.cloud.aiplatform.v1beta1.TrainingPipeline.training_task_definition]. |
model_display_name |
str
Optional. The display name of the managed Vertex AI Model. The name can be up to 128 characters long and can consist of any UTF-8 characters. If not provided upon creation, the job's display_name is used. |
sync |
bool
Whether to execute this method synchronously. If False, this method will be executed in concurrent Future and any downstream object will be immediately returned and synced when the Future has completed. |
Type | Description |
RuntimeError | If Training job has already been run or is waiting to run. |
Type | Description |
model | The trained Vertex AI Model resource. |