Menganalisis sentimen dalam string

Periksa teks yang diberikan dan identifikasi pendapat emosional yang dominan.

Jelajahi lebih lanjut

Untuk dokumentasi mendetail yang menyertakan contoh kode ini, lihat artikel berikut:

Contoh kode

Go

Untuk mempelajari cara menginstal dan menggunakan library klien untuk Natural Language, lihat library klien Natural Language. Untuk mengetahui informasi selengkapnya, lihat dokumentasi referensi API Go Natural Language.

Untuk mengautentikasi ke Natural Language, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

import (
	"context"
	"fmt"
	"io"

	language "cloud.google.com/go/language/apiv2"
	"cloud.google.com/go/language/apiv2/languagepb"
)

// analyzeSentiment sends a string of text to the Cloud Natural Language API to
// assess the sentiment of the text.
func analyzeSentiment(w io.Writer, text string) error {
	ctx := context.Background()

	// Initialize client.
	client, err := language.NewClient(ctx)
	if err != nil {
		return err
	}
	defer client.Close()

	resp, err := client.AnalyzeSentiment(ctx, &languagepb.AnalyzeSentimentRequest{
		Document: &languagepb.Document{
			Source: &languagepb.Document_Content{
				Content: text,
			},
			Type: languagepb.Document_PLAIN_TEXT,
		},
		EncodingType: languagepb.EncodingType_UTF8,
	})

	if err != nil {
		return fmt.Errorf("AnalyzeSentiment: %w", err)
	}
	fmt.Fprintf(w, "Response: %q\n", resp)

	return nil
}

Java

Untuk mempelajari cara menginstal dan menggunakan library klien untuk Natural Language, lihat library klien Natural Language. Untuk mengetahui informasi selengkapnya, lihat dokumentasi referensi API Java Natural Language.

Untuk mengautentikasi ke Natural Language, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

// Instantiate the Language client com.google.cloud.language.v2.LanguageServiceClient
try (LanguageServiceClient language = LanguageServiceClient.create()) {
  Document doc = Document.newBuilder().setContent(text).setType(Type.PLAIN_TEXT).build();
  AnalyzeSentimentResponse response = language.analyzeSentiment(doc);
  Sentiment sentiment = response.getDocumentSentiment();
  if (sentiment == null) {
    System.out.println("No sentiment found");
  } else {
    System.out.printf("Sentiment magnitude: %.3f\n", sentiment.getMagnitude());
    System.out.printf("Sentiment score: %.3f\n", sentiment.getScore());
  }
  return sentiment;
}

Node.js

Untuk mempelajari cara menginstal dan menggunakan library klien untuk Natural Language, lihat library klien Natural Language. Untuk mengetahui informasi selengkapnya, lihat dokumentasi referensi API Node.js Natural Language.

Untuk mengautentikasi ke Natural Language, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

// Imports the Google Cloud client library
const language = require('@google-cloud/language').v2;

// Creates a client
const client = new language.LanguageServiceClient();

/**
 * TODO(developer): Uncomment the following line to run this code.
 */
// const text = 'Your text to analyze, e.g. Hello, world!';

// Prepares a document, representing the provided text
const document = {
  content: text,
  type: 'PLAIN_TEXT',
};

// Detects the sentiment of the document
const [result] = await client.analyzeSentiment({document});

const sentiment = result.documentSentiment;
console.log('Document sentiment:');
console.log(`  Score: ${sentiment.score}`);
console.log(`  Magnitude: ${sentiment.magnitude}`);

const sentences = result.sentences;
sentences.forEach(sentence => {
  console.log(`Sentence: ${sentence.text.content}`);
  console.log(`  Score: ${sentence.sentiment.score}`);
  console.log(`  Magnitude: ${sentence.sentiment.magnitude}`);
});

PHP

Untuk mempelajari cara menginstal dan menggunakan library klien untuk Natural Language, lihat library klien Natural Language.

Untuk mengautentikasi ke Natural Language, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

use Google\Cloud\Language\V1\AnalyzeSentimentRequest;
use Google\Cloud\Language\V1\Client\LanguageServiceClient;
use Google\Cloud\Language\V1\Document;
use Google\Cloud\Language\V1\Document\Type;

/**
 * @param string $text The text to analyze
 */
function analyze_sentiment(string $text): void
{
    $languageServiceClient = new LanguageServiceClient();

    // Create a new Document, add text as content and set type to PLAIN_TEXT
    $document = (new Document())
        ->setContent($text)
        ->setType(Type::PLAIN_TEXT);

    // Call the analyzeSentiment function
    $request = (new AnalyzeSentimentRequest())
        ->setDocument($document);
    $response = $languageServiceClient->analyzeSentiment($request);
    $document_sentiment = $response->getDocumentSentiment();
    // Print document information
    printf('Document Sentiment:' . PHP_EOL);
    printf('  Magnitude: %s' . PHP_EOL, $document_sentiment->getMagnitude());
    printf('  Score: %s' . PHP_EOL, $document_sentiment->getScore());
    printf(PHP_EOL);
    $sentences = $response->getSentences();
    foreach ($sentences as $sentence) {
        printf('Sentence: %s' . PHP_EOL, $sentence->getText()->getContent());
        printf('Sentence Sentiment:' . PHP_EOL);
        $sentiment = $sentence->getSentiment();
        if ($sentiment) {
            printf('Entity Magnitude: %s' . PHP_EOL, $sentiment->getMagnitude());
            printf('Entity Score: %s' . PHP_EOL, $sentiment->getScore());
        }
        print(PHP_EOL);
    }
}

Python

Untuk mempelajari cara menginstal dan menggunakan library klien untuk Natural Language, lihat library klien Natural Language. Untuk mengetahui informasi selengkapnya, lihat dokumentasi referensi API Python Natural Language.

Untuk mengautentikasi ke Natural Language, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

from google.cloud import language_v2

def sample_analyze_sentiment(text_content: str = "I am so happy and joyful.") -> None:
    """
    Analyzes Sentiment in a string.

    Args:
      text_content: The text content to analyze.
    """

    client = language_v2.LanguageServiceClient()

    # text_content = 'I am so happy and joyful.'

    # Available types: PLAIN_TEXT, HTML
    document_type_in_plain_text = language_v2.Document.Type.PLAIN_TEXT

    # Optional. If not specified, the language is automatically detected.
    # For list of supported languages:
    # https://cloud.google.com/natural-language/docs/languages
    language_code = "en"
    document = {
        "content": text_content,
        "type_": document_type_in_plain_text,
        "language_code": language_code,
    }

    # Available values: NONE, UTF8, UTF16, UTF32
    # See https://cloud.google.com/natural-language/docs/reference/rest/v2/EncodingType.
    encoding_type = language_v2.EncodingType.UTF8

    response = client.analyze_sentiment(
        request={"document": document, "encoding_type": encoding_type}
    )
    # Get overall sentiment of the input document
    print(f"Document sentiment score: {response.document_sentiment.score}")
    print(f"Document sentiment magnitude: {response.document_sentiment.magnitude}")
    # Get sentiment for all sentences in the document
    for sentence in response.sentences:
        print(f"Sentence text: {sentence.text.content}")
        print(f"Sentence sentiment score: {sentence.sentiment.score}")
        print(f"Sentence sentiment magnitude: {sentence.sentiment.magnitude}")

    # Get the language of the text, which will be the same as
    # the language specified in the request or, if not specified,
    # the automatically-detected language.
    print(f"Language of the text: {response.language_code}")

Langkah selanjutnya

Untuk menelusuri dan memfilter contoh kode untuk produk Google Cloud lainnya, lihat browser contoh Google Cloud.