Classificar o conteúdo de um arquivo do Cloud Storage

Analisar um arquivo armazenado no Google Cloud Storage e retornar uma lista de categorias de conteúdo que se aplicam ao texto do documento encontrado

Exemplo de código

Go

Para saber como instalar e usar a biblioteca de cliente para a Natural Language, consulte Bibliotecas de cliente da Natural Language. Para mais informações, consulte a documentação de referência da API Natural Language Go.

Para se autenticar no Natural Language, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.


func classifyTextFromGCS(ctx context.Context, gcsURI string) (*languagepb.ClassifyTextResponse, error) {
	return client.ClassifyText(ctx, &languagepb.ClassifyTextRequest{
		Document: &languagepb.Document{
			Source: &languagepb.Document_GcsContentUri{
				GcsContentUri: gcsURI,
			},
			Type: languagepb.Document_PLAIN_TEXT,
		},
	})
}

Java

Para saber como instalar e usar a biblioteca de cliente para a Natural Language, consulte Bibliotecas de cliente da Natural Language. Para mais informações, consulte a documentação de referência da API Natural Language Java.

Para se autenticar no Natural Language, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

// Instantiate the Language client com.google.cloud.language.v2.LanguageServiceClient
try (LanguageServiceClient language = LanguageServiceClient.create()) {
  // Set the GCS content URI path
  Document doc =
      Document.newBuilder().setGcsContentUri(gcsUri).setType(Type.PLAIN_TEXT).build();
  ClassifyTextRequest request = ClassifyTextRequest.newBuilder().setDocument(doc).build();
  // Detect categories in the given file
  ClassifyTextResponse response = language.classifyText(request);

  for (ClassificationCategory category : response.getCategoriesList()) {
    System.out.printf(
        "Category name : %s, Confidence : %.3f\n",
        category.getName(), category.getConfidence());
  }
}

Node.js

Para saber como instalar e usar a biblioteca de cliente para a Natural Language, consulte Bibliotecas de cliente da Natural Language. Para mais informações, consulte a documentação de referência da API Natural Language Node.js.

Para se autenticar no Natural Language, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

// Imports the Google Cloud client library.
const language = require('@google-cloud/language').v2;

// Creates a client.
const client = new language.LanguageServiceClient();

/**
 * TODO(developer): Uncomment the following lines to run this code
 */
// const bucketName = 'Your bucket name, e.g. my-bucket';
// const fileName = 'Your file name, e.g. my-file.txt';

// Prepares a document, representing a text file in Cloud Storage
const document = {
  gcsContentUri: `gs://${bucketName}/${fileName}`,
  type: 'PLAIN_TEXT',
};

// Classifies text in the document
const [classification] = await client.classifyText({document});

console.log('Categories:');
classification.categories.forEach(category => {
  console.log(`Name: ${category.name}, Confidence: ${category.confidence}`);
});

PHP

Para saber como instalar e usar a biblioteca de cliente para a Natural Language, consulte Bibliotecas de cliente da Natural Language.

Para se autenticar no Natural Language, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

use Google\Cloud\Language\V1\ClassifyTextRequest;
use Google\Cloud\Language\V1\Client\LanguageServiceClient;
use Google\Cloud\Language\V1\Document;
use Google\Cloud\Language\V1\Document\Type;

/**
 * @param string $uri The cloud storage object to analyze (gs://your-bucket-name/your-object-name)
 */
function classify_text_from_file(string $uri): void
{
    $languageServiceClient = new LanguageServiceClient();

    // Create a new Document, pass GCS URI and set type to PLAIN_TEXT
    $document = (new Document())
        ->setGcsContentUri($uri)
        ->setType(Type::PLAIN_TEXT);

    // Call the analyzeSentiment function
    $request = (new ClassifyTextRequest())
        ->setDocument($document);
    $response = $languageServiceClient->classifyText($request);
    $categories = $response->getCategories();
    // Print document information
    foreach ($categories as $category) {
        printf('Category Name: %s' . PHP_EOL, $category->getName());
        printf('Confidence: %s' . PHP_EOL, $category->getConfidence());
        print(PHP_EOL);
    }
}

Python

Para saber como instalar e usar a biblioteca de cliente para a Natural Language, consulte Bibliotecas de cliente da Natural Language. Para mais informações, consulte a documentação de referência da API Natural Language Python.

Para se autenticar no Natural Language, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

from google.cloud import language_v2


def sample_classify_text(
    gcs_content_uri: str = "gs://cloud-samples-data/language/classify-entertainment.txt",
) -> None:
    """
    Classifies Content in text file stored in Cloud Storage.

    Args:
      gcs_content_uri: Google Cloud Storage URI where the file content is located.
        e.g. gs://[Your Bucket]/[Path to File].
    """

    client = language_v2.LanguageServiceClient()

    # Available types: PLAIN_TEXT, HTML
    document_type_in_plain_text = language_v2.Document.Type.PLAIN_TEXT

    # Optional. If not specified, the language is automatically detected.
    # For list of supported languages:
    # https://cloud.google.com/natural-language/docs/languages
    language_code = "en"
    document = {
        "gcs_content_uri": gcs_content_uri,
        "type_": document_type_in_plain_text,
        "language_code": language_code,
    }

    response = client.classify_text(request={"document": document})
    # Loop through classified categories returned from the API
    for category in response.categories:
        # Get the name of the category representing the document.
        # See the predefined taxonomy of categories:
        # https://cloud.google.com/natural-language/docs/categories
        print(f"Category name: {category.name}")
        # Get the confidence. Number representing how certain the classifier
        # is that this category represents the provided text.
        print(f"Confidence: {category.confidence}")

A seguir

Para pesquisar e filtrar exemplos de código de outros produtos do Google Cloud, consulte a pesquisa de exemplos de código do Google Cloud.