빠른 시작: 클라이언트 라이브러리 사용

이 페이지에서는 Google Cloud 클라이언트 라이브러리를 사용하여 선호하는 프로그래밍 언어로 Cloud Natural Language API를 시작하는 방법을 보여줍니다.

시작하기 전에

  1. Google Cloud 계정에 로그인합니다. Google Cloud를 처음 사용하는 경우 계정을 만들고 Google 제품의 실제 성능을 평가해 보세요. 신규 고객에게는 워크로드를 실행, 테스트, 배포하는 데 사용할 수 있는 $300의 무료 크레딧이 제공됩니다.
  2. Google Cloud Console의 프로젝트 선택기 페이지에서 Google Cloud 프로젝트를 선택하거나 만듭니다.

    프로젝트 선택기로 이동

  3. Cloud 프로젝트에 결제가 사용 설정되어 있는지 확인합니다. 프로젝트에 결제가 사용 설정되어 있는지 확인하는 방법을 알아보세요.

  4. Cloud Natural Language API를 사용 설정합니다.

    API 사용 설정

  5. 서비스 계정을 만듭니다.

    1. Cloud Console에서 서비스 계정 만들기 페이지로 이동합니다.

      서비스 계정 만들기로 이동
    2. 프로젝트를 선택합니다.
    3. 서비스 계정 이름 필드에 이름을 입력합니다. Cloud Console은 이 이름을 기반으로 서비스 계정 ID 필드를 채웁니다.

      서비스 계정 설명 필드에 설명을 입력합니다. 예를 들면 Service account for quickstart입니다.

    4. 완료를 클릭하여 서비스 계정 만들기를 마칩니다.

      브라우저 창을 닫지 마세요. 다음 단계에서 사용합니다.

  6. 서비스 계정 키 만들기

    1. Cloud Console에서 만든 서비스 계정의 이메일 주소를 클릭합니다.
    2. 를 클릭합니다.
    3. 키 추가를 클릭한 후 새 키 만들기를 클릭합니다.
    4. 만들기를 클릭합니다. JSON 키 파일이 컴퓨터에 다운로드됩니다.
    5. 닫기를 클릭합니다.
  7. GOOGLE_APPLICATION_CREDENTIALS 환경 변수를 서비스 계정 키가 포함된 JSON 파일의 경로로 설정합니다. 이 변수는 현재 셸 세션에만 적용되므로, 새 세션을 열 경우, 변수를 다시 설정합니다.

  8. Google Cloud Console의 프로젝트 선택기 페이지에서 Google Cloud 프로젝트를 선택하거나 만듭니다.

    프로젝트 선택기로 이동

  9. Cloud 프로젝트에 결제가 사용 설정되어 있는지 확인합니다. 프로젝트에 결제가 사용 설정되어 있는지 확인하는 방법을 알아보세요.

  10. Cloud Natural Language API를 사용 설정합니다.

    API 사용 설정

  11. 서비스 계정을 만듭니다.

    1. Cloud Console에서 서비스 계정 만들기 페이지로 이동합니다.

      서비스 계정 만들기로 이동
    2. 프로젝트를 선택합니다.
    3. 서비스 계정 이름 필드에 이름을 입력합니다. Cloud Console은 이 이름을 기반으로 서비스 계정 ID 필드를 채웁니다.

      서비스 계정 설명 필드에 설명을 입력합니다. 예를 들면 Service account for quickstart입니다.

    4. 완료를 클릭하여 서비스 계정 만들기를 마칩니다.

      브라우저 창을 닫지 마세요. 다음 단계에서 사용합니다.

  12. 서비스 계정 키 만들기

    1. Cloud Console에서 만든 서비스 계정의 이메일 주소를 클릭합니다.
    2. 를 클릭합니다.
    3. 키 추가를 클릭한 후 새 키 만들기를 클릭합니다.
    4. 만들기를 클릭합니다. JSON 키 파일이 컴퓨터에 다운로드됩니다.
    5. 닫기를 클릭합니다.
  13. GOOGLE_APPLICATION_CREDENTIALS 환경 변수를 서비스 계정 키가 포함된 JSON 파일의 경로로 설정합니다. 이 변수는 현재 셸 세션에만 적용되므로, 새 세션을 열 경우, 변수를 다시 설정합니다.

클라이언트 라이브러리 설치

Go

go get cloud.google.com/go/language/apiv1

자바

Maven을 사용하는 경우 pom.xml 파일에 다음을 추가합니다. BOM에 대한 자세한 내용은 Google Cloud Platform 라이브러리 BOM을 참조하세요.

<dependencyManagement>
  <dependencies>
    <dependency>
      <groupId>com.google.cloud</groupId>
      <artifactId>libraries-bom</artifactId>
      <version>24.2.0</version>
      <type>pom</type>
      <scope>import</scope>
    </dependency>
  </dependencies>
</dependencyManagement>

<dependencies>
  <dependency>
    <groupId>com.google.cloud</groupId>
    <artifactId>google-cloud-language</artifactId>
  </dependency>

Gradle을 사용하는 경우 종속 항목에 다음을 추가합니다.

implementation platform('com.google.cloud:libraries-bom:24.2.0')

implementation 'com.google.cloud:google-cloud-language'

SBT를 사용하는 경우 종속 항목에 다음을 추가합니다.

libraryDependencies += "com.google.cloud" % "google-cloud-language" % "2.1.5"

Visual Studio Code, IntelliJ 또는 Eclipse를 사용하는 경우 다음 IDE 플러그인을 사용하여 클라이언트 라이브러리를 프로젝트에 추가할 수 있습니다.

이 플러그인은 서비스 계정의 키 관리와 같은 추가 기능을 제공합니다. 자세한 내용은 각 플러그인의 문서를 참조하세요.

Node.js

라이브러리를 설치하기 전에 Node.js 개발을 위한 환경이 준비됐는지 확인하세요.

npm install --save @google-cloud/language

Python

라이브러리를 설치하기 전에 Python 개발을 위한 환경이 준비됐는지 확인하세요.

pip install --upgrade google-cloud-language

일부 텍스트 분석

이제 Natural Language API를 사용하여 일부 텍스트를 분석할 수 있습니다. 텍스트 감정 분석을 처음 수행하려면 다음 코드를 실행합니다.

Go

GitHub에서 보기 의견 보내기

// Sample language-quickstart uses the Google Cloud Natural API to analyze the
// sentiment of "Hello, world!".
package main

import (
	"context"
	"fmt"
	"log"

	language "cloud.google.com/go/language/apiv1"
	languagepb "google.golang.org/genproto/googleapis/cloud/language/v1"
)

func main() {
	ctx := context.Background()

	// Creates a client.
	client, err := language.NewClient(ctx)
	if err != nil {
		log.Fatalf("Failed to create client: %v", err)
	}
	defer client.Close()

	// Sets the text to analyze.
	text := "Hello, world!"

	// Detects the sentiment of the text.
	sentiment, err := client.AnalyzeSentiment(ctx, &languagepb.AnalyzeSentimentRequest{
		Document: &languagepb.Document{
			Source: &languagepb.Document_Content{
				Content: text,
			},
			Type: languagepb.Document_PLAIN_TEXT,
		},
		EncodingType: languagepb.EncodingType_UTF8,
	})
	if err != nil {
		log.Fatalf("Failed to analyze text: %v", err)
	}

	fmt.Printf("Text: %v\n", text)
	if sentiment.DocumentSentiment.Score >= 0 {
		fmt.Println("Sentiment: positive")
	} else {
		fmt.Println("Sentiment: negative")
	}
}

자바

GitHub에서 보기 의견 보내기
// Imports the Google Cloud client library
import com.google.cloud.language.v1.Document;
import com.google.cloud.language.v1.Document.Type;
import com.google.cloud.language.v1.LanguageServiceClient;
import com.google.cloud.language.v1.Sentiment;

public class QuickstartSample {
  public static void main(String... args) throws Exception {
    // Instantiates a client
    try (LanguageServiceClient language = LanguageServiceClient.create()) {

      // The text to analyze
      String text = "Hello, world!";
      Document doc = Document.newBuilder().setContent(text).setType(Type.PLAIN_TEXT).build();

      // Detects the sentiment of the text
      Sentiment sentiment = language.analyzeSentiment(doc).getDocumentSentiment();

      System.out.printf("Text: %s%n", text);
      System.out.printf("Sentiment: %s, %s%n", sentiment.getScore(), sentiment.getMagnitude());
    }
  }
}

Node.js

예시를 실행하기 전에 Node.js 개발 환경이 준비됐는지 확인합니다.

GitHub에서 보기 의견 보내기
async function quickstart() {
  // Imports the Google Cloud client library
  const language = require('@google-cloud/language');

  // Instantiates a client
  const client = new language.LanguageServiceClient();

  // The text to analyze
  const text = 'Hello, world!';

  const document = {
    content: text,
    type: 'PLAIN_TEXT',
  };

  // Detects the sentiment of the text
  const [result] = await client.analyzeSentiment({document: document});
  const sentiment = result.documentSentiment;

  console.log(`Text: ${text}`);
  console.log(`Sentiment score: ${sentiment.score}`);
  console.log(`Sentiment magnitude: ${sentiment.magnitude}`);
}

Python

예시를 실행하기 전에 Python 개발 환경이 준비됐는지 확인합니다.

GitHub에서 보기 의견 보내기
# Imports the Google Cloud client library
from google.cloud import language_v1

# Instantiates a client
client = language_v1.LanguageServiceClient()

# The text to analyze
text = u"Hello, world!"
document = language_v1.Document(
    content=text, type_=language_v1.Document.Type.PLAIN_TEXT
)

# Detects the sentiment of the text
sentiment = client.analyze_sentiment(
    request={"document": document}
).document_sentiment

print("Text: {}".format(text))
print("Sentiment: {}, {}".format(sentiment.score, sentiment.magnitude))

수고하셨습니다 처음으로 요청을 Natural Language API에 보냈습니다.

어땠나요?

삭제

이 페이지에서 사용한 리소스 비용이 Google Cloud 계정에 청구되지 않도록 하려면 다음 단계를 수행합니다.

  • 불필요한 프로젝트가 있는 경우 Cloud Console을 사용하여 삭제할 수 있습니다.

다음 단계