Este documento descreve como configurar métricas definidas pelo utilizador para o escalamento automático horizontal de pods (HPA) no Google Distributed Cloud.
Esta página destina-se a administradores, arquitetos e operadores que otimizam a arquitetura e os recursos dos sistemas para garantir o custo total de propriedade mais baixo para a respetiva empresa ou unidade de negócio, e planeiam a capacidade e as necessidades de infraestrutura. Para saber mais sobre as funções comuns e as tarefas de exemplo que referimos no Google Cloud conteúdo, consulte Funções e tarefas comuns do utilizador do GKE.
Implemente o Prometheus e o adaptador de métricas
Nesta secção, implementa o Prometheus para extrair métricas definidas pelo utilizador e o prometheus-adapter para preencher a API Kubernetes Custom Metrics com o Prometheus como back-end.
Guarde os seguintes manifestos num ficheiro com o nome custom-metrics-adapter.yaml
.
Conteúdo do ficheiro de manifesto para o Prometheus e o Metrics Adapter
# Copyright 2018 Google Inc # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. apiVersion: v1 kind: ServiceAccount metadata: name: stackdriver-prometheus namespace: kube-system --- apiVersion: rbac.authorization.k8s.io/v1 kind: ClusterRole metadata: name: stackdriver-prometheus namespace: kube-system rules: - apiGroups: - "" resources: - nodes - services - endpoints - pods verbs: - get - list - watch --- apiVersion: rbac.authorization.k8s.io/v1 kind: ClusterRoleBinding metadata: name: stackdriver-prometheus namespace: kube-system roleRef: apiGroup: rbac.authorization.k8s.io kind: ClusterRole name: stackdriver-prometheus subjects: - kind: ServiceAccount name: stackdriver-prometheus namespace: kube-system --- apiVersion: v1 kind: Service metadata: name: stackdriver-prometheus-app namespace: kube-system labels: app: stackdriver-prometheus-app spec: clusterIP: "None" ports: - name: http port: 9090 protocol: TCP targetPort: 9090 sessionAffinity: ClientIP selector: app: stackdriver-prometheus-app --- apiVersion: apps/v1 kind: Deployment metadata: name: stackdriver-prometheus-app namespace: kube-system labels: app: stackdriver-prometheus-app spec: replicas: 1 selector: matchLabels: app: stackdriver-prometheus-app template: metadata: labels: app: stackdriver-prometheus-app spec: serviceAccount: stackdriver-prometheus containers: - name: prometheus-server image: prom/prometheus:v2.45.0 args: - "--config.file=/etc/prometheus/config/prometheus.yaml" - "--storage.tsdb.path=/data" - "--storage.tsdb.retention.time=2h" ports: - name: prometheus containerPort: 9090 readinessProbe: httpGet: path: /-/ready port: 9090 periodSeconds: 5 timeoutSeconds: 3 # Allow up to 10m on startup for data recovery failureThreshold: 120 livenessProbe: httpGet: path: /-/healthy port: 9090 periodSeconds: 5 timeoutSeconds: 3 failureThreshold: 6 resources: requests: cpu: 250m memory: 500Mi volumeMounts: - name: config-volume mountPath: /etc/prometheus/config - name: stackdriver-prometheus-app-data mountPath: /data volumes: - name: config-volume configMap: name: stackdriver-prometheus-app - name: stackdriver-prometheus-app-data emptyDir: {} terminationGracePeriodSeconds: 300 nodeSelector: kubernetes.io/os: linux --- apiVersion: v1 data: prometheus.yaml: | global: scrape_interval: 1m rule_files: - /etc/config/rules.yaml - /etc/config/alerts.yaml scrape_configs: - job_name: prometheus-io-endpoints kubernetes_sd_configs: - role: endpoints relabel_configs: - action: keep regex: true source_labels: - __meta_kubernetes_service_annotation_prometheus_io_scrape - action: replace regex: (.+) source_labels: - __meta_kubernetes_service_annotation_prometheus_io_path target_label: __metrics_path__ - action: replace regex: (https?) source_labels: - __meta_kubernetes_service_annotation_prometheus_io_scheme target_label: __scheme__ - action: replace regex: ([^:]+)(?::\d+)?;(\d+) replacement: $1:$2 source_labels: - __address__ - __meta_kubernetes_service_annotation_prometheus_io_port target_label: __address__ - action: replace source_labels: - __meta_kubernetes_namespace target_label: namespace - action: replace source_labels: - __meta_kubernetes_pod_name target_label: pod - action: keep regex: (.+) source_labels: - __meta_kubernetes_endpoint_port_name - job_name: prometheus-io-services kubernetes_sd_configs: - role: service metrics_path: /probe params: module: - http_2xx relabel_configs: - action: replace source_labels: - __address__ target_label: __param_target - action: replace replacement: blackbox target_label: __address__ - action: keep regex: true source_labels: - __meta_kubernetes_service_annotation_prometheus_io_probe - action: replace source_labels: - __meta_kubernetes_namespace target_label: namespace - action: replace source_labels: - __meta_kubernetes_pod_name target_label: pod - job_name: prometheus-io-pods kubernetes_sd_configs: - role: pod relabel_configs: - action: keep regex: true source_labels: - __meta_kubernetes_pod_annotation_prometheus_io_scrape - action: replace regex: (.+) source_labels: - __meta_kubernetes_pod_annotation_prometheus_io_path target_label: __metrics_path__ - action: replace regex: ([^:]+)(?::\d+)?;(\d+) replacement: $1:$2 source_labels: - __address__ - __meta_kubernetes_pod_annotation_prometheus_io_port target_label: __address__ - action: replace source_labels: - __meta_kubernetes_namespace target_label: namespace - action: replace source_labels: - __meta_kubernetes_pod_name target_label: pod kind: ConfigMap metadata: name: stackdriver-prometheus-app namespace: kube-system --- # The main section of custom metrics adapter. kind: ServiceAccount apiVersion: v1 metadata: name: custom-metrics-apiserver namespace: kube-system --- apiVersion: rbac.authorization.k8s.io/v1 kind: ClusterRoleBinding metadata: name: custom-metrics:system:auth-delegator roleRef: apiGroup: rbac.authorization.k8s.io kind: ClusterRole name: system:auth-delegator subjects: - kind: ServiceAccount name: custom-metrics-apiserver namespace: kube-system --- apiVersion: rbac.authorization.k8s.io/v1 kind: ClusterRole metadata: name: custom-metrics-server-resources rules: - apiGroups: - custom.metrics.k8s.io resources: ["*"] verbs: ["*"] --- apiVersion: rbac.authorization.k8s.io/v1 kind: ClusterRole metadata: name: custom-metrics-resource-reader rules: - apiGroups: - "" resources: - nodes - namespaces - pods - services verbs: - get - watch - list --- apiVersion: rbac.authorization.k8s.io/v1 kind: ClusterRoleBinding metadata: name: custom-metrics-resource-reader roleRef: apiGroup: rbac.authorization.k8s.io kind: ClusterRole name: custom-metrics-resource-reader subjects: - kind: ServiceAccount name: custom-metrics-apiserver namespace: kube-system --- apiVersion: rbac.authorization.k8s.io/v1 kind: RoleBinding metadata: name: custom-metrics-auth-reader namespace: kube-system roleRef: apiGroup: rbac.authorization.k8s.io kind: Role name: extension-apiserver-authentication-reader subjects: - kind: ServiceAccount name: custom-metrics-apiserver namespace: kube-system --- apiVersion: v1 kind: ConfigMap metadata: name: adapter-config namespace: kube-system data: config.yaml: | rules: default: false # fliter all metrics - seriesQuery: '{pod=~".+"}' seriesFilters: [] resources: # resource name is mapped as it is. ex. namespace -> namespace template: <<.Resource>> name: matches: ^(.*)$ as: "" # Aggregate metric on resource level metricsQuery: sum(<<.Series>>{<<.LabelMatchers>>}) by (<<.GroupBy>>) --- apiVersion: apps/v1 kind: Deployment metadata: labels: app: custom-metrics-apiserver name: custom-metrics-apiserver namespace: kube-system spec: replicas: 1 selector: matchLabels: app: custom-metrics-apiserver template: metadata: labels: app: custom-metrics-apiserver name: custom-metrics-apiserver spec: serviceAccountName: custom-metrics-apiserver containers: - name: custom-metrics-apiserver resources: requests: cpu: 15m memory: 20Mi limits: cpu: 100m memory: 150Mi image: registry.k8s.io/prometheus-adapter/prometheus-adapter:v0.11.0 args: - /adapter - --cert-dir=/var/run/serving-cert - --secure-port=6443 - --prometheus-url=http://stackdriver-prometheus-app.kube-system.svc:9090/ - --metrics-relist-interval=1m - --config=/etc/adapter/config.yaml ports: - containerPort: 6443 volumeMounts: - name: serving-cert mountPath: /var/run/serving-cert - mountPath: /etc/adapter/ name: config readOnly: true nodeSelector: kubernetes.io/os: linux volumes: - name: serving-cert emptyDir: medium: Memory - name: config configMap: name: adapter-config --- apiVersion: v1 kind: Service metadata: name: custom-metrics-apiserver namespace: kube-system spec: ports: - port: 443 targetPort: 6443 selector: app: custom-metrics-apiserver --- apiVersion: apiregistration.k8s.io/v1 kind: APIService metadata: name: v1beta1.custom.metrics.k8s.io spec: service: name: custom-metrics-apiserver namespace: kube-system group: custom.metrics.k8s.io version: v1beta1 insecureSkipTLSVerify: true groupPriorityMinimum: 100 versionPriority: 100 --- apiVersion: apiregistration.k8s.io/v1 kind: APIService metadata: name: v1beta2.custom.metrics.k8s.io spec: service: name: custom-metrics-apiserver namespace: kube-system group: custom.metrics.k8s.io version: v1beta2 insecureSkipTLSVerify: true groupPriorityMinimum: 100 versionPriority: 100 --- apiVersion: rbac.authorization.k8s.io/v1 kind: ClusterRoleBinding metadata: name: hpa-controller-custom-metrics roleRef: apiGroup: rbac.authorization.k8s.io kind: ClusterRole name: custom-metrics-server-resources subjects: - kind: ServiceAccount name: horizontal-pod-autoscaler namespace: kube-system
Crie a implementação e o serviço:
kubectl --kubeconfig USER_CLUSTER_KUBECONFIG apply -f custom-metrics-adapter.yaml
O passo seguinte é anotar a aplicação do utilizador para a recolha de métricas.
Anote uma aplicação do utilizador para a recolha de métricas
Para anotar uma aplicação do utilizador para ser extraída e os registos enviados para o Cloud Monitoring, tem de adicionar annotations
correspondentes aos metadados do serviço, do pod e dos pontos finais.
metadata: name: "example-monitoring" namespace: "default" annotations: prometheus.io/scrape: "true" prometheus.io/path: "" - Overriding metrics path (default "/metrics")
Implemente uma aplicação de utilizador de exemplo
Nesta secção, implementa uma aplicação de exemplo com registos e métricas compatíveis com o Prometheus.
Guarde os seguintes manifestos de serviço e implementação num ficheiro com o nome
my-app.yaml
. Repare que o serviço tem a anotaçãoprometheus.io/scrape: "true"
:kind: Service apiVersion: v1 metadata: name: "example-monitoring" namespace: "default" annotations: prometheus.io/scrape: "true" spec: selector: app: "example-monitoring" ports: - name: http port: 9090 --- apiVersion: apps/v1 kind: Deployment metadata: name: "example-monitoring" namespace: "default" labels: app: "example-monitoring" spec: replicas: 1 selector: matchLabels: app: "example-monitoring" template: metadata: labels: app: "example-monitoring" spec: containers: - image: gcr.io/google-samples/prometheus-dummy-exporter:v0.2.0 name: prometheus-example-exporter command: - ./prometheus-dummy-exporter args: - --metric-name=example_monitoring_up - --metric-value=1 - --port=9090 resources: requests: cpu: 100m
Crie a implementação e o serviço:
kubectl --kubeconfig USER_CLUSTER_KUBECONFIG apply -f my-app.yaml
Use as métricas personalizadas no HPA
Implemente o objeto HPA para usar a métrica exposta no passo anterior. Consulte o artigo Ajuste de escala automático em várias métricas e métricas personalizadas para ver informações mais avançadas sobre diferentes tipos de métricas personalizadas.
apiVersion: autoscaling/v2 kind: HorizontalPodAutoscaler metadata: name: example-monitoring-hpa namespace: default spec: scaleTargetRef: apiVersion: apps/v1 kind: Deployment name: example-monitoring minReplicas: 1 maxReplicas: 5 metrics: - type: Pods pods: metric: name: example_monitoring_up target: type: AverageValue averageValue: 20
A métrica do tipo Pods tem um seletor de métricas predefinido para as etiquetas dos Pods de destino, que é a forma como o kube-controller-manager funciona. Neste exemplo, pode consultar a métrica example_monitoring_up com um seletor de {matchLabels: {app: example-monitoring}}
, uma vez que estão disponíveis nos pods de destino. Qualquer outro seletor especificado é adicionado à lista. Para evitar o seletor predefinido, pode remover quaisquer etiquetas no pod de destino ou usar a métrica de tipo de objeto.
Verifique se as métricas da aplicação definidas pelo utilizador são usadas pelo HPA
Verifique se as métricas da aplicação definidas pelo utilizador são usadas pelo HPA:
kubectl --kubeconfig=USER_CLUSTER_KUBECONFIG describe hpa example-monitoring-hpa
O resultado terá o seguinte aspeto:
Name: example-monitoring-hpa Namespace: default Labels:Annotations: autoscaling.alpha.kubernetes.io/conditions: [{"type":"AbleToScale","status":"True","lastTransitionTime":"2023-08-23T22:07:24Z","reason":"ReadyForNewScale","message":"recommended size... autoscaling.alpha.kubernetes.io/current-metrics: [{"type":"Pods","pods":{"metricName":"example_monitoring_up","currentAverageValue":"1"}}] autoscaling.alpha.kubernetes.io/metrics: [{"type":"Pods","pods":{"metricName":"example_monitoring_up","targetAverageValue":"20"}}] CreationTimestamp: Wed, 23 Aug 2023 22:07:09 +0000 Reference: Deployment/example-monitoring Min replicas: 1 Max replicas: 5 Deployment pods: 1 current / 1 desired
Custos
A utilização de métricas personalizadas para o HPA não incorre em custos adicionais do Cloud Monitoring. Os pods para ativar métricas personalizadas consomem CPU e memória adicionais com base na quantidade de métricas que extraem.