public static final class UpdateModelDeploymentMonitoringJobRequest.Builder extends GeneratedMessageV3.Builder<UpdateModelDeploymentMonitoringJobRequest.Builder> implements UpdateModelDeploymentMonitoringJobRequestOrBuilder
Request message for
JobService.UpdateModelDeploymentMonitoringJob.
Protobuf type google.cloud.aiplatform.v1.UpdateModelDeploymentMonitoringJobRequest
Static Methods
public static final Descriptors.Descriptor getDescriptor()
Returns
Methods
public UpdateModelDeploymentMonitoringJobRequest.Builder addRepeatedField(Descriptors.FieldDescriptor field, Object value)
Parameters
Returns
Overrides
public UpdateModelDeploymentMonitoringJobRequest build()
Returns
public UpdateModelDeploymentMonitoringJobRequest buildPartial()
Returns
public UpdateModelDeploymentMonitoringJobRequest.Builder clear()
Returns
Overrides
public UpdateModelDeploymentMonitoringJobRequest.Builder clearField(Descriptors.FieldDescriptor field)
Parameter
Returns
Overrides
public UpdateModelDeploymentMonitoringJobRequest.Builder clearModelDeploymentMonitoringJob()
Required. The model monitoring configuration which replaces the resource on the
server.
.google.cloud.aiplatform.v1.ModelDeploymentMonitoringJob model_deployment_monitoring_job = 1 [(.google.api.field_behavior) = REQUIRED];
Returns
public UpdateModelDeploymentMonitoringJobRequest.Builder clearOneof(Descriptors.OneofDescriptor oneof)
Parameter
Returns
Overrides
public UpdateModelDeploymentMonitoringJobRequest.Builder clearUpdateMask()
Required. The update mask is used to specify the fields to be overwritten in the
ModelDeploymentMonitoringJob resource by the update.
The fields specified in the update_mask are relative to the resource, not
the full request. A field will be overwritten if it is in the mask. If the
user does not provide a mask then only the non-empty fields present in the
request will be overwritten. Set the update_mask to *
to override all
fields.
For the objective config, the user can either provide the update mask for
model_deployment_monitoring_objective_configs or any combination of its
nested fields, such as:
model_deployment_monitoring_objective_configs.objective_config.training_dataset.
Updatable fields:
display_name
model_deployment_monitoring_schedule_config
model_monitoring_alert_config
logging_sampling_strategy
labels
log_ttl
enable_monitoring_pipeline_logs
. and
model_deployment_monitoring_objective_configs
. or
model_deployment_monitoring_objective_configs.objective_config.training_dataset
model_deployment_monitoring_objective_configs.objective_config.training_prediction_skew_detection_config
model_deployment_monitoring_objective_configs.objective_config.prediction_drift_detection_config
.google.protobuf.FieldMask update_mask = 2 [(.google.api.field_behavior) = REQUIRED];
Returns
public UpdateModelDeploymentMonitoringJobRequest.Builder clone()
Returns
Overrides
public UpdateModelDeploymentMonitoringJobRequest getDefaultInstanceForType()
Returns
public Descriptors.Descriptor getDescriptorForType()
Returns
Overrides
public ModelDeploymentMonitoringJob getModelDeploymentMonitoringJob()
Required. The model monitoring configuration which replaces the resource on the
server.
.google.cloud.aiplatform.v1.ModelDeploymentMonitoringJob model_deployment_monitoring_job = 1 [(.google.api.field_behavior) = REQUIRED];
Returns
public ModelDeploymentMonitoringJob.Builder getModelDeploymentMonitoringJobBuilder()
Required. The model monitoring configuration which replaces the resource on the
server.
.google.cloud.aiplatform.v1.ModelDeploymentMonitoringJob model_deployment_monitoring_job = 1 [(.google.api.field_behavior) = REQUIRED];
Returns
public ModelDeploymentMonitoringJobOrBuilder getModelDeploymentMonitoringJobOrBuilder()
Required. The model monitoring configuration which replaces the resource on the
server.
.google.cloud.aiplatform.v1.ModelDeploymentMonitoringJob model_deployment_monitoring_job = 1 [(.google.api.field_behavior) = REQUIRED];
Returns
public FieldMask getUpdateMask()
Required. The update mask is used to specify the fields to be overwritten in the
ModelDeploymentMonitoringJob resource by the update.
The fields specified in the update_mask are relative to the resource, not
the full request. A field will be overwritten if it is in the mask. If the
user does not provide a mask then only the non-empty fields present in the
request will be overwritten. Set the update_mask to *
to override all
fields.
For the objective config, the user can either provide the update mask for
model_deployment_monitoring_objective_configs or any combination of its
nested fields, such as:
model_deployment_monitoring_objective_configs.objective_config.training_dataset.
Updatable fields:
display_name
model_deployment_monitoring_schedule_config
model_monitoring_alert_config
logging_sampling_strategy
labels
log_ttl
enable_monitoring_pipeline_logs
. and
model_deployment_monitoring_objective_configs
. or
model_deployment_monitoring_objective_configs.objective_config.training_dataset
model_deployment_monitoring_objective_configs.objective_config.training_prediction_skew_detection_config
model_deployment_monitoring_objective_configs.objective_config.prediction_drift_detection_config
.google.protobuf.FieldMask update_mask = 2 [(.google.api.field_behavior) = REQUIRED];
Returns
public FieldMask.Builder getUpdateMaskBuilder()
Required. The update mask is used to specify the fields to be overwritten in the
ModelDeploymentMonitoringJob resource by the update.
The fields specified in the update_mask are relative to the resource, not
the full request. A field will be overwritten if it is in the mask. If the
user does not provide a mask then only the non-empty fields present in the
request will be overwritten. Set the update_mask to *
to override all
fields.
For the objective config, the user can either provide the update mask for
model_deployment_monitoring_objective_configs or any combination of its
nested fields, such as:
model_deployment_monitoring_objective_configs.objective_config.training_dataset.
Updatable fields:
display_name
model_deployment_monitoring_schedule_config
model_monitoring_alert_config
logging_sampling_strategy
labels
log_ttl
enable_monitoring_pipeline_logs
. and
model_deployment_monitoring_objective_configs
. or
model_deployment_monitoring_objective_configs.objective_config.training_dataset
model_deployment_monitoring_objective_configs.objective_config.training_prediction_skew_detection_config
model_deployment_monitoring_objective_configs.objective_config.prediction_drift_detection_config
.google.protobuf.FieldMask update_mask = 2 [(.google.api.field_behavior) = REQUIRED];
Returns
public FieldMaskOrBuilder getUpdateMaskOrBuilder()
Required. The update mask is used to specify the fields to be overwritten in the
ModelDeploymentMonitoringJob resource by the update.
The fields specified in the update_mask are relative to the resource, not
the full request. A field will be overwritten if it is in the mask. If the
user does not provide a mask then only the non-empty fields present in the
request will be overwritten. Set the update_mask to *
to override all
fields.
For the objective config, the user can either provide the update mask for
model_deployment_monitoring_objective_configs or any combination of its
nested fields, such as:
model_deployment_monitoring_objective_configs.objective_config.training_dataset.
Updatable fields:
display_name
model_deployment_monitoring_schedule_config
model_monitoring_alert_config
logging_sampling_strategy
labels
log_ttl
enable_monitoring_pipeline_logs
. and
model_deployment_monitoring_objective_configs
. or
model_deployment_monitoring_objective_configs.objective_config.training_dataset
model_deployment_monitoring_objective_configs.objective_config.training_prediction_skew_detection_config
model_deployment_monitoring_objective_configs.objective_config.prediction_drift_detection_config
.google.protobuf.FieldMask update_mask = 2 [(.google.api.field_behavior) = REQUIRED];
Returns
public boolean hasModelDeploymentMonitoringJob()
Required. The model monitoring configuration which replaces the resource on the
server.
.google.cloud.aiplatform.v1.ModelDeploymentMonitoringJob model_deployment_monitoring_job = 1 [(.google.api.field_behavior) = REQUIRED];
Returns
Type | Description |
boolean | Whether the modelDeploymentMonitoringJob field is set.
|
public boolean hasUpdateMask()
Required. The update mask is used to specify the fields to be overwritten in the
ModelDeploymentMonitoringJob resource by the update.
The fields specified in the update_mask are relative to the resource, not
the full request. A field will be overwritten if it is in the mask. If the
user does not provide a mask then only the non-empty fields present in the
request will be overwritten. Set the update_mask to *
to override all
fields.
For the objective config, the user can either provide the update mask for
model_deployment_monitoring_objective_configs or any combination of its
nested fields, such as:
model_deployment_monitoring_objective_configs.objective_config.training_dataset.
Updatable fields:
display_name
model_deployment_monitoring_schedule_config
model_monitoring_alert_config
logging_sampling_strategy
labels
log_ttl
enable_monitoring_pipeline_logs
. and
model_deployment_monitoring_objective_configs
. or
model_deployment_monitoring_objective_configs.objective_config.training_dataset
model_deployment_monitoring_objective_configs.objective_config.training_prediction_skew_detection_config
model_deployment_monitoring_objective_configs.objective_config.prediction_drift_detection_config
.google.protobuf.FieldMask update_mask = 2 [(.google.api.field_behavior) = REQUIRED];
Returns
Type | Description |
boolean | Whether the updateMask field is set.
|
protected GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable()
Returns
Overrides
public final boolean isInitialized()
Returns
Overrides
public UpdateModelDeploymentMonitoringJobRequest.Builder mergeFrom(UpdateModelDeploymentMonitoringJobRequest other)
Parameter
Returns
public UpdateModelDeploymentMonitoringJobRequest.Builder mergeFrom(CodedInputStream input, ExtensionRegistryLite extensionRegistry)
Parameters
Returns
Overrides
Exceptions
public UpdateModelDeploymentMonitoringJobRequest.Builder mergeFrom(Message other)
Parameter
Returns
Overrides
public UpdateModelDeploymentMonitoringJobRequest.Builder mergeModelDeploymentMonitoringJob(ModelDeploymentMonitoringJob value)
Required. The model monitoring configuration which replaces the resource on the
server.
.google.cloud.aiplatform.v1.ModelDeploymentMonitoringJob model_deployment_monitoring_job = 1 [(.google.api.field_behavior) = REQUIRED];
Parameter
Returns
public final UpdateModelDeploymentMonitoringJobRequest.Builder mergeUnknownFields(UnknownFieldSet unknownFields)
Parameter
Returns
Overrides
public UpdateModelDeploymentMonitoringJobRequest.Builder mergeUpdateMask(FieldMask value)
Required. The update mask is used to specify the fields to be overwritten in the
ModelDeploymentMonitoringJob resource by the update.
The fields specified in the update_mask are relative to the resource, not
the full request. A field will be overwritten if it is in the mask. If the
user does not provide a mask then only the non-empty fields present in the
request will be overwritten. Set the update_mask to *
to override all
fields.
For the objective config, the user can either provide the update mask for
model_deployment_monitoring_objective_configs or any combination of its
nested fields, such as:
model_deployment_monitoring_objective_configs.objective_config.training_dataset.
Updatable fields:
display_name
model_deployment_monitoring_schedule_config
model_monitoring_alert_config
logging_sampling_strategy
labels
log_ttl
enable_monitoring_pipeline_logs
. and
model_deployment_monitoring_objective_configs
. or
model_deployment_monitoring_objective_configs.objective_config.training_dataset
model_deployment_monitoring_objective_configs.objective_config.training_prediction_skew_detection_config
model_deployment_monitoring_objective_configs.objective_config.prediction_drift_detection_config
.google.protobuf.FieldMask update_mask = 2 [(.google.api.field_behavior) = REQUIRED];
Parameter
Returns
public UpdateModelDeploymentMonitoringJobRequest.Builder setField(Descriptors.FieldDescriptor field, Object value)
Parameters
Returns
Overrides
public UpdateModelDeploymentMonitoringJobRequest.Builder setModelDeploymentMonitoringJob(ModelDeploymentMonitoringJob value)
Required. The model monitoring configuration which replaces the resource on the
server.
.google.cloud.aiplatform.v1.ModelDeploymentMonitoringJob model_deployment_monitoring_job = 1 [(.google.api.field_behavior) = REQUIRED];
Parameter
Returns
public UpdateModelDeploymentMonitoringJobRequest.Builder setModelDeploymentMonitoringJob(ModelDeploymentMonitoringJob.Builder builderForValue)
Required. The model monitoring configuration which replaces the resource on the
server.
.google.cloud.aiplatform.v1.ModelDeploymentMonitoringJob model_deployment_monitoring_job = 1 [(.google.api.field_behavior) = REQUIRED];
Parameter
Returns
public UpdateModelDeploymentMonitoringJobRequest.Builder setRepeatedField(Descriptors.FieldDescriptor field, int index, Object value)
Parameters
Returns
Overrides
public final UpdateModelDeploymentMonitoringJobRequest.Builder setUnknownFields(UnknownFieldSet unknownFields)
Parameter
Returns
Overrides
public UpdateModelDeploymentMonitoringJobRequest.Builder setUpdateMask(FieldMask value)
Required. The update mask is used to specify the fields to be overwritten in the
ModelDeploymentMonitoringJob resource by the update.
The fields specified in the update_mask are relative to the resource, not
the full request. A field will be overwritten if it is in the mask. If the
user does not provide a mask then only the non-empty fields present in the
request will be overwritten. Set the update_mask to *
to override all
fields.
For the objective config, the user can either provide the update mask for
model_deployment_monitoring_objective_configs or any combination of its
nested fields, such as:
model_deployment_monitoring_objective_configs.objective_config.training_dataset.
Updatable fields:
display_name
model_deployment_monitoring_schedule_config
model_monitoring_alert_config
logging_sampling_strategy
labels
log_ttl
enable_monitoring_pipeline_logs
. and
model_deployment_monitoring_objective_configs
. or
model_deployment_monitoring_objective_configs.objective_config.training_dataset
model_deployment_monitoring_objective_configs.objective_config.training_prediction_skew_detection_config
model_deployment_monitoring_objective_configs.objective_config.prediction_drift_detection_config
.google.protobuf.FieldMask update_mask = 2 [(.google.api.field_behavior) = REQUIRED];
Parameter
Returns
public UpdateModelDeploymentMonitoringJobRequest.Builder setUpdateMask(FieldMask.Builder builderForValue)
Required. The update mask is used to specify the fields to be overwritten in the
ModelDeploymentMonitoringJob resource by the update.
The fields specified in the update_mask are relative to the resource, not
the full request. A field will be overwritten if it is in the mask. If the
user does not provide a mask then only the non-empty fields present in the
request will be overwritten. Set the update_mask to *
to override all
fields.
For the objective config, the user can either provide the update mask for
model_deployment_monitoring_objective_configs or any combination of its
nested fields, such as:
model_deployment_monitoring_objective_configs.objective_config.training_dataset.
Updatable fields:
display_name
model_deployment_monitoring_schedule_config
model_monitoring_alert_config
logging_sampling_strategy
labels
log_ttl
enable_monitoring_pipeline_logs
. and
model_deployment_monitoring_objective_configs
. or
model_deployment_monitoring_objective_configs.objective_config.training_dataset
model_deployment_monitoring_objective_configs.objective_config.training_prediction_skew_detection_config
model_deployment_monitoring_objective_configs.objective_config.prediction_drift_detection_config
.google.protobuf.FieldMask update_mask = 2 [(.google.api.field_behavior) = REQUIRED];
Parameter
Name | Description |
builderForValue | Builder
|
Returns