Classificar documentos

Classificar documentos

Mais informações

Para ver a documentação detalhada que inclui este exemplo de código, consulte:

Exemplo de código

Python

Para mais informações, consulte a documentação de referência da API Python do Vertex AI Agent Builder.

Para autenticar no Vertex AI Agent Builder, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

from google.cloud import discoveryengine_v1 as discoveryengine

# TODO(developer): Uncomment these variables before running the sample.
# project_id = "YOUR_PROJECT_ID"

client = discoveryengine.RankServiceClient()

# The full resource name of the ranking config.
# Format: projects/{project_id}/locations/{location}/rankingConfigs/default_ranking_config
ranking_config = client.ranking_config_path(
    project=project_id,
    location="global",
    ranking_config="default_ranking_config",
)
request = discoveryengine.RankRequest(
    ranking_config=ranking_config,
    model="semantic-ranker-512@latest",
    top_n=10,
    query="What is Google Gemini?",
    records=[
        discoveryengine.RankingRecord(
            id="1",
            title="Gemini",
            content="The Gemini zodiac symbol often depicts two figures standing side-by-side.",
        ),
        discoveryengine.RankingRecord(
            id="2",
            title="Gemini",
            content="Gemini is a cutting edge large language model created by Google.",
        ),
        discoveryengine.RankingRecord(
            id="3",
            title="Gemini Constellation",
            content="Gemini is a constellation that can be seen in the night sky.",
        ),
    ],
)

response = client.rank(request=request)

# Handle the response
print(response)

A seguir

Para pesquisar e filtrar exemplos de código de outros produtos do Google Cloud, consulte a pesquisa de exemplos de código do Google Cloud.