Vertex AI には、さまざまなデベロッパーのニーズに合わせて、両方のステージのオプションが用意されています。
取得
ニーズに応じて最適な取得方法を選択します。
Vertex AI Search: Vertex AI Search は、Google 検索品質の情報検索エンジンであり、企業データを使用するあらゆる生成 AI アプリケーションのコンポーネントとして使用できます。Vertex AI Search は、さまざまなドキュメント タイプを処理し、BigQuery や多くのサードパーティ システムなど、さまざまなソースシステムへのコネクタを備えた、RAG 用のすぐに使用できるセマンティック検索エンジンとキーワード検索エンジンとして機能します。
独自の検索を構築する: 独自のセマンティック検索を構築する場合は、カスタム RAG システムのコンポーネントに Vertex AI API を使用できます。この API スイートは、ドキュメントの解析、エンベディングの生成、ベクトル検索、セマンティック ランキングに使用できる、質の高い実装となっています。これらの低レベルの API を使用すると、低レベルの Vertex AI API に依存することで、製品化までの時間を短縮し、品質を高めながら、取得ツールの設計を柔軟に行うことができます。
グラウンディング用のカスタム RAG システムを開発すると、プロセスのすべてのステップで柔軟性と制御が可能になります。Vertex AI には、独自の検索ソリューションを作成するのに役立つ一連の API が用意されています。これらの API を使用すると、RAG アプリケーションの設計を柔軟に行うことができます。また、これらの低レベルの Vertex AI API を利用することで、製品化までの時間を短縮し、高品質を実現できます。
Document AI Layout Parser。Document AI Layout Parser は、さまざまな形式のドキュメントを構造化表現に変換し、段落、表、リストなどのコンテンツや、見出し、ページヘッダー、フッターなどの構造要素にアクセスできるようにします。また、さまざまな生成 AI アプリや検索アプリで情報検索を容易にするコンテキスト対応のチャンクを作成します。
Embeddings API: Vertex AI embeddings API を使用すると、テキストまたはマルチモーダル入力のエンベディングを作成できます。エンベディングは、入力の意味を捉えるように設計された浮動小数点数ベクトルです。エンベディングを使用して、ベクトル検索によるセマンティック検索を強化できます。
Ranking API。
Ranking API は、ドキュメントのリストを取得し、ドキュメントが特定のクエリとどの程度関連しているかに基づいてドキュメントを再ランク付けします。ドキュメントとクエリの意味的類似性のみを考慮するエンベディングと比較して、Ranking API は、ドキュメントが特定のクエリにどの程度適しているかについて、より正確なスコアを提供できます。
[[["わかりやすい","easyToUnderstand","thumb-up"],["問題の解決に役立った","solvedMyProblem","thumb-up"],["その他","otherUp","thumb-up"]],[["わかりにくい","hardToUnderstand","thumb-down"],["情報またはサンプルコードが不正確","incorrectInformationOrSampleCode","thumb-down"],["必要な情報 / サンプルがない","missingTheInformationSamplesINeed","thumb-down"],["翻訳に関する問題","translationIssue","thumb-down"],["その他","otherDown","thumb-down"]],["最終更新日 2024-12-24 UTC。"],[[["\u003cp\u003eVertex AI provides APIs for building Retrieval-Augmented Generation (RAG) applications and search engines, supporting both retrieval and generation stages.\u003c/p\u003e\n"],["\u003cp\u003eFor retrieval, options include Vertex AI Search, building your own using Vertex AI APIs, using an existing search engine, Vertex AI RAG Engine, or leveraging Google Search for Gemini models.\u003c/p\u003e\n"],["\u003cp\u003eFor generation, options include the Grounded Generation API, using Gemini with built-in Google Search grounding, or using models from the Vertex AI Model Garden for full customization.\u003c/p\u003e\n"],["\u003cp\u003eVertex AI's suite of APIs includes the Document AI Layout Parser, Embeddings API, Vector Search, and Ranking API, enabling users to create custom RAG systems with flexibility and control.\u003c/p\u003e\n"],["\u003cp\u003eThe Vertex AI workflow for generating grounded responses from unstructured data involves importing documents, processing with the layout parser, creating text embeddings, indexing with Vector Search, ranking chunks, and generating grounded answers.\u003c/p\u003e\n"]]],[],null,["# Vertex AI APIs for building search and RAG experiences\n\nVertex AI offers a suite of APIs to help you build Retrieval-Augmented\nGeneration (RAG) applications or a search engine. This page introduces those\nAPIs.\n\nRetrieval and generation\n------------------------\n\nRAG is a methodology that enables Large Language Models (LLMs) to generate\nresponses that are grounded to your data source of choice. There are two stages\nin RAG:\n\n1. **Retrieval**: Getting the most relevant facts quickly can be a common search problem. With RAG, you can quickly retrieve the facts that are important to generate an answer.\n2. **Generation:** The retrieved facts are used by the LLM to generate a grounded response.\n\nVertex AI offers options for both stages to match a variety of\ndeveloper needs.\n\nRetrieval\n---------\n\nChoose the best retrieval method for your needs:\n\n- **Vertex AI Search:** Vertex AI Search is a\n Google Search-quality information retrieval engine that can be a\n component of any generative AI application that uses your enterprise data.\n Vertex AI Search works as an out-of-the-box semantic \\& keyword\n search engine for RAG with the ability to process a variety of document\n types and with connectors to a variety of source systems including\n BigQuery and many third party systems.\n\n For more information, see\n [Vertex AI Search](/enterprise-search).\n- **Build your own retrieval:** If you want to build your semantic search, you\n can rely on Vertex AI APIs for components of your custom RAG\n system. This suite of APIs provide high-quality implementations for document\n parsing, embedding generation, vector search, and semantic ranking. Using these\n lower-level APIs gives you full flexibility on the design of your retriever\n while at the same time offering accelerated time to market and high quality\n by relying on lower-level Vertex AI APIs.\n\n For more information, see\n [Build your own Retrieval Augmented Generation](#build-rag).\n- **Bring an existing retrieval** : You can use your existing search as a\n retriever for [grounded generation](/generative-ai-app-builder/docs/grounded-gen).\n You can also use the Vertex APIs for RAG\n to upgrade your existing search to higher quality. For more information, see\n [Grounding overview](/vertex-ai/generative-ai/docs/grounding/overview).\n\n- **Vertex AI RAG Engine**: Vertex AI RAG Engine\n provides a fully-managed runtime for RAG orchestration, which lets\n developers build RAG for use in production and enterprise-ready contexts.\n\n For more information, see [Vertex AI RAG Engine\n overview](/vertex-ai/generative-ai/docs/rag-overview) in the Generative AI\n on Vertex AI documentation.\n- **Google Search**: When you use Grounding with\n Google Search for your Gemini model, then Gemini\n uses Google Search and generates output that is grounded to the\n relevant search results. This retrieval method doesn't require management\n and you get the world's knowledge available to Gemini.\n\n For more information, see [Grounding with\n Google Search](/vertex-ai/generative-ai/docs/multimodal/ground-gemini)\n in the Generative AI on Vertex AI documentation.\n\nGeneration\n----------\n\nChoose the best generation method for your needs:\n\n- **Ground with your data**:\n Generate well-grounded answers to a user's query. The grounded generation\n API uses specialized, fine-tuned Gemini models and is an effective\n way to reduce hallucinations and provide responses grounded to your sources\n or third-party sources including references to grounding support content.\n\n For more information, see\n [Generate grounded answers with RAG](/generative-ai-app-builder/docs/grounded-gen).\n\n You can also ground responses to your Vertex AI Search data using\n Generative AI on Vertex AI. For more information, see\n [Ground with your data](/vertex-ai/generative-ai/docs/multimodal/ground-with-your-data).\n- **Ground with Google Search:** Gemini is Google's most capable\n model and offers out-of-the-box grounding with Google Search. You\n can use it to build your fully-customized grounded generation solution.\n\n For more information, see [Grounding with Google Search](/vertex-ai/generative-ai/docs/multimodal/ground-gemini) in\n the Generative AI on Vertex AI documentation.\n- **Model Garden:** If you want full control and the model of your choice,\n you can use any of the models in\n [Vertex AI Model Garden](/model-garden) for generation.\n\nBuild your own Retrieval Augmented Generation\n---------------------------------------------\n\nDeveloping a custom RAG system for grounding offers flexibility and control at\nevery step of the process. Vertex AI offers a suite of APIs to help you\ncreate your own search solutions. Using those APIs gives you full flexibility on\nthe design of your RAG application while at the same time offering accelerated\ntime to market and high quality by relying on these lower-level\nVertex AI APIs.\n\n- **The Document AI Layout Parser.**\n The Document AI Layout Parser transforms documents in various\n formats into structured representations, making content like paragraphs,\n tables, lists, and structural elements like headings, page headers, and\n footers accessible, and creating context-aware chunks that facilitate\n information retrieval in a range of generative AI and discovery apps.\n\n For more information, see [Document AI Layout Parser](/document-ai/docs/layout-parse-chunk) in the\n *Document AI* documentation.\n- **Embeddings API:** The Vertex AI embeddings APIs let you create\n embeddings for text or multimodal inputs. Embeddings are vectors of\n floating point numbers that are designed to capture the meaning of their\n input. You can use the embeddings to power semantic search using Vector\n search.\n\n For more information, see [Text embeddings](/vertex-ai/generative-ai/docs/embeddings/get-text-embeddings) and\n [Multimodal embeddings](/vertex-ai/generative-ai/docs/embeddings/get-multimodal-embeddings) in the Generative AI on\n Vertex AI documentation.\n- **Vector Search.** The retrieval engine is a key part of your RAG\n or search application. Vertex AI Vector Search is a\n retrieval engine that can search from billions of semantically similar or\n semantically related items at scale, with high queries per second (QPS), high\n recall, low latency, and cost efficiency. It can search over dense\n embeddings, and supports sparse embedding keyword search and hybrid search in\n Public preview.\n\n For more information, see: [Overview of Vertex AI\n Vector Search](/vertex-ai/docs/vector-search/overview) in the\n Vertex AI documentation.\n- **The ranking API.**\n The ranking API takes in a list of documents and reranks those documents\n based on how relevant the documents are to a given query. Compared to\n embeddings that look purely at the semantic similarity of a document and a\n query, the ranking API can give you a more precise score for how well a\n document answers a given query.\n\n For more information, see\n [Improve search and RAG quality with ranking API](/generative-ai-app-builder/docs/ranking).\n- **The grounded generation API.** Use the grounded\n generation API to generate\n well-grounded answers to a user's prompt. The grounding sources can be your\n Vertex AI Search data stores, custom data that you provide, or\n Google Search.\n\n For more information, see [Generate grounded answers](/generative-ai-app-builder/docs/grounded-gen).\n- **The generate content API.** Use the generate content API to generate\n well-grounded answers to a user's prompt. The grounding sources can be your\n Vertex AI Search data stores or Google Search.\n\n For more information, see\n [Ground with Google Search](/vertex-ai/generative-ai/docs/multimodal/ground-with-google-search) or\n [Ground with your data](/vertex-ai/generative-ai/docs/multimodal/ground-with-your-data).\n- **The check grounding API.**\n The check grounding API determines how grounded a given piece of text is in a\n given set of reference texts. The API can generate supporting citations from\n the reference text to indicate where the given text is supported by the\n reference texts. Among other things, the API can be used to assess the\n grounded-ness of responses from a RAG systems. Additionally, as an\n experimental feature, the API also generates contradicting citations that\n show where the given text and reference texts disagree.\n\n For more information, see [Check grounding](/generative-ai-app-builder/docs/check-grounding).\n\nWorkflow: Generate grounded responses from unstructured data\n------------------------------------------------------------\n\nHere's a workflow that outlines how to integrate the Vertex AI RAG APIs\nto generate grounded responses from unstructured data.\n\n1. Import your unstructured documents, such as PDF files, HTML files, or images with text, into a Cloud Storage location.\n2. Process the imported documents using the [layout parser](/document-ai/docs/layout-parse-chunk). The layout parser breaks down the unstructured documents into chunks and transforms the unstructured content into its structured representation. The layout parser also extracts annotations from the chunks.\n3. [Create text embeddings](/vertex-ai/generative-ai/docs/embeddings/get-text-embeddings) for chunks using Vertex AI text embeddings API.\n4. [Index and retrieve](/vertex-ai/docs/vector-search/create-manage-index) the chunk embeddings using Vector Search.\n5. [Rank the chunks](/generative-ai-app-builder/docs/ranking) using the ranking API and determine the top-ranked chunks.\n6. Generate grounded answers based on the top-ranked chunks using the [grounded generation API](/generative-ai-app-builder/docs/grounded-gen) or using the [generate content API](/vertex-ai/generative-ai/docs/multimodal/ground-with-your-data).\n\nIf you generated the answers using an answer generation model other than the\nGoogle models, you can [check the grounding](/generative-ai-app-builder/docs/check-grounding) of these answers\nusing the check grounding method."]]