ImageMagick 教學課程 (第 1 代)


本教學課程示範如何使用 Cloud Run 函式、Cloud Vision APIImageMagick,偵測並模糊處理上傳至 Cloud Storage 值區的令人反感圖片。

目標

  • 部署由儲存空間觸發的背景 Cloud Run 函式
  • 使用 Vision API 偵測暴力或成人內容。
  • 使用 ImageMagick 來模糊處理令人反感的圖片。
  • 上傳食人殭屍的圖片來測試函式。

費用

在本文件中,您會使用 Google Cloud的下列計費元件:

  • Cloud Run functions
  • Cloud Storage
  • Cloud Vision

如要根據預測用量估算費用,請使用 Pricing Calculator

初次使用 Google Cloud 的使用者可能符合免費試用資格。

事前準備

  1. Sign in to your Google Cloud account. If you're new to Google Cloud, create an account to evaluate how our products perform in real-world scenarios. New customers also get $300 in free credits to run, test, and deploy workloads.
  2. In the Google Cloud console, on the project selector page, select or create a Google Cloud project.

    Roles required to select or create a project

    • Select a project: Selecting a project doesn't require a specific IAM role—you can select any project that you've been granted a role on.
    • Create a project: To create a project, you need the Project Creator (roles/resourcemanager.projectCreator), which contains the resourcemanager.projects.create permission. Learn how to grant roles.

    Go to project selector

  3. Verify that billing is enabled for your Google Cloud project.

  4. Enable the Cloud Functions, Cloud Build, Cloud Storage, and Cloud Vision APIs.

    Roles required to enable APIs

    To enable APIs, you need the Service Usage Admin IAM role (roles/serviceusage.serviceUsageAdmin), which contains the serviceusage.services.enable permission. Learn how to grant roles.

    Enable the APIs

  5. Install the Google Cloud CLI.

  6. 如果您使用外部識別資訊提供者 (IdP),請先 使用聯合身分登入 gcloud CLI

  7. 如要初始化 gcloud CLI,請執行下列指令:

    gcloud init
  8. In the Google Cloud console, on the project selector page, select or create a Google Cloud project.

    Roles required to select or create a project

    • Select a project: Selecting a project doesn't require a specific IAM role—you can select any project that you've been granted a role on.
    • Create a project: To create a project, you need the Project Creator (roles/resourcemanager.projectCreator), which contains the resourcemanager.projects.create permission. Learn how to grant roles.

    Go to project selector

  9. Verify that billing is enabled for your Google Cloud project.

  10. Enable the Cloud Functions, Cloud Build, Cloud Storage, and Cloud Vision APIs.

    Roles required to enable APIs

    To enable APIs, you need the Service Usage Admin IAM role (roles/serviceusage.serviceUsageAdmin), which contains the serviceusage.services.enable permission. Learn how to grant roles.

    Enable the APIs

  11. Install the Google Cloud CLI.

  12. 如果您使用外部識別資訊提供者 (IdP),請先 使用聯合身分登入 gcloud CLI

  13. 如要初始化 gcloud CLI,請執行下列指令:

    gcloud init
  14. 如果您已安裝 gcloud CLI,請執行下列指令來更新:

    gcloud components update
  15. 準備開發環境。 <0x
  16. 視覺化資料流動過程

    ImageMagick 教學課程應用程式中的資料流動過程涉及數個步驟:

    1. 將圖片上傳至 Cloud Storage 值區。
    2. 函式會使用 Vision API 分析圖片。
    3. 如果偵測到暴力或成人內容,這項函式會使用 ImageMagick 將圖片模糊處理。
    4. 模糊處理後的圖片會上傳至另一個 Cloud Storage bucket,供您使用。

    準備應用程式

    1. 建立 Cloud Storage 值區以供上傳圖片,其中 YOUR_INPUT_BUCKET_NAME 是不重複的值區名稱:

      gcloud storage buckets create gs://YOUR_INPUT_BUCKET_NAME
    2. 建立 Cloud Storage 值區以接收模糊處理的圖片,其中 YOUR_OUTPUT_BUCKET_NAME 是不重複的值區名稱:

      gcloud storage buckets create gs://YOUR_OUTPUT_BUCKET_NAME
    3. 將應用程式存放區範例複製到本機電腦中:

      Node.js

      git clone https://github.com/GoogleCloudPlatform/nodejs-docs-samples.git

      您也可以 下載 zip 格式的範例,然後解壓縮該檔案。

      Python

      git clone https://github.com/GoogleCloudPlatform/python-docs-samples.git

      您也可以 下載 zip 格式的範例,然後解壓縮該檔案。

      Go

      git clone https://github.com/GoogleCloudPlatform/golang-samples.git

      您也可以 下載 zip 格式的範例,然後解壓縮該檔案。

      Java

      git clone https://github.com/GoogleCloudPlatform/java-docs-samples.git

      您也可以 下載 zip 格式的範例,然後解壓縮該檔案。

      Ruby

      git clone https://github.com/GoogleCloudPlatform/ruby-docs-samples.git

      您也可以 下載 zip 格式的範例,然後解壓縮該檔案。

    4. 變更為包含 Cloud Run 函式範例程式碼的目錄:

      Node.js

      cd nodejs-docs-samples/functions/imagemagick/

      Python

      cd python-docs-samples/functions/imagemagick/

      Go

      cd golang-samples/functions/imagemagick/

      Java

      cd java-docs-samples/functions/imagemagick/

      Ruby

      cd ruby-docs-samples/functions/imagemagick/

    瞭解程式碼

    匯入依附元件

    應用程式必須匯入多個依附元件,才能與Google Cloud 服務、ImageMagick 和檔案系統互動:

    Node.js

    const gm = require('gm').subClass({imageMagick: true});
    const fs = require('fs').promises;
    const path = require('path');
    const vision = require('@google-cloud/vision');
    
    const {Storage} = require('@google-cloud/storage');
    const storage = new Storage();
    const client = new vision.ImageAnnotatorClient();
    
    const {BLURRED_BUCKET_NAME} = process.env;

    Python

    import os
    import tempfile
    
    from google.cloud import storage, vision
    from wand.image import Image
    
    storage_client = storage.Client()
    vision_client = vision.ImageAnnotatorClient()

    Go

    
    // Package imagemagick contains an example of using ImageMagick to process a
    // file uploaded to Cloud Storage.
    package imagemagick
    
    import (
    	"context"
    	"errors"
    	"fmt"
    	"log"
    	"os"
    	"os/exec"
    
    	"cloud.google.com/go/storage"
    	vision "cloud.google.com/go/vision/apiv1"
    	"cloud.google.com/go/vision/v2/apiv1/visionpb"
    )
    
    // Global API clients used across function invocations.
    var (
    	storageClient *storage.Client
    	visionClient  *vision.ImageAnnotatorClient
    )
    
    func init() {
    	// Declare a separate err variable to avoid shadowing the client variables.
    	var err error
    
    	storageClient, err = storage.NewClient(context.Background())
    	if err != nil {
    		log.Fatalf("storage.NewClient: %v", err)
    	}
    
    	visionClient, err = vision.NewImageAnnotatorClient(context.Background())
    	if err != nil {
    		log.Fatalf("vision.NewAnnotatorClient: %v", err)
    	}
    }
    

    Java

    
    
    import com.google.cloud.functions.BackgroundFunction;
    import com.google.cloud.functions.Context;
    import com.google.cloud.storage.Blob;
    import com.google.cloud.storage.BlobId;
    import com.google.cloud.storage.BlobInfo;
    import com.google.cloud.storage.Storage;
    import com.google.cloud.storage.StorageOptions;
    import com.google.cloud.vision.v1.AnnotateImageRequest;
    import com.google.cloud.vision.v1.AnnotateImageResponse;
    import com.google.cloud.vision.v1.BatchAnnotateImagesResponse;
    import com.google.cloud.vision.v1.Feature;
    import com.google.cloud.vision.v1.Feature.Type;
    import com.google.cloud.vision.v1.Image;
    import com.google.cloud.vision.v1.ImageAnnotatorClient;
    import com.google.cloud.vision.v1.ImageSource;
    import com.google.cloud.vision.v1.SafeSearchAnnotation;
    import functions.eventpojos.GcsEvent;
    import java.io.IOException;
    import java.nio.file.Files;
    import java.nio.file.Path;
    import java.nio.file.Paths;
    import java.util.List;
    import java.util.logging.Level;
    import java.util.logging.Logger;
    
    public class ImageMagick implements BackgroundFunction<GcsEvent> {
    
      private static Storage storage = StorageOptions.getDefaultInstance().getService();
      private static final String BLURRED_BUCKET_NAME = System.getenv("BLURRED_BUCKET_NAME");
      private static final Logger logger = Logger.getLogger(ImageMagick.class.getName());
    }

    Ruby

    require "functions_framework"
    
    FunctionsFramework.on_startup do
      set_global :storage_client do
        require "google/cloud/storage"
        Google::Cloud::Storage.new
      end
    
      set_global :vision_client do
        require "google/cloud/vision"
        Google::Cloud::Vision.image_annotator
      end
    end

    分析圖片

    將圖片上傳至您建立來儲存圖片的 Cloud Storage 值區時,會叫用下列函式。這項函式會使用 Vision API 偵測上傳圖片中的暴力或成人內容。

    Node.js

    // Blurs uploaded images that are flagged as Adult or Violence.
    exports.blurOffensiveImages = async event => {
      // This event represents the triggering Cloud Storage object.
      const object = event;
    
      const file = storage.bucket(object.bucket).file(object.name);
      const filePath = `gs://${object.bucket}/${object.name}`;
    
      console.log(`Analyzing ${file.name}.`);
    
      try {
        const [result] = await client.safeSearchDetection(filePath);
        const detections = result.safeSearchAnnotation || {};
    
        if (
          // Levels are defined in https://cloud.google.com/vision/docs/reference/rest/v1/AnnotateImageResponse#likelihood
          detections.adult === 'VERY_LIKELY' ||
          detections.violence === 'VERY_LIKELY'
        ) {
          console.log(`Detected ${file.name} as inappropriate.`);
          return await blurImage(file, BLURRED_BUCKET_NAME);
        } else {
          console.log(`Detected ${file.name} as OK.`);
        }
      } catch (err) {
        console.error(`Failed to analyze ${file.name}.`, err);
        throw err;
      }
    };

    Python

    # Blurs uploaded images that are flagged as Adult or Violence.
    def blur_offensive_images(data, context):
        file_data = data
    
        file_name = file_data["name"]
        bucket_name = file_data["bucket"]
    
        blob = storage_client.bucket(bucket_name).get_blob(file_name)
        blob_uri = f"gs://{bucket_name}/{file_name}"
        blob_source = vision.Image(source=vision.ImageSource(gcs_image_uri=blob_uri))
    
        # Ignore already-blurred files
        if file_name.startswith("blurred-"):
            print(f"The image {file_name} is already blurred.")
            return
    
        print(f"Analyzing {file_name}.")
    
        result = vision_client.safe_search_detection(image=blob_source)
        detected = result.safe_search_annotation
    
        # Process image
        if detected.adult == 5 or detected.violence == 5:
            print(f"The image {file_name} was detected as inappropriate.")
            return __blur_image(blob)
        else:
            print(f"The image {file_name} was detected as OK.")
    
    

    Go

    
    // GCSEvent is the payload of a GCS event.
    type GCSEvent struct {
    	Bucket string `json:"bucket"`
    	Name   string `json:"name"`
    }
    
    // BlurOffensiveImages blurs offensive images uploaded to GCS.
    func BlurOffensiveImages(ctx context.Context, e GCSEvent) error {
    	outputBucket := os.Getenv("BLURRED_BUCKET_NAME")
    	if outputBucket == "" {
    		return errors.New("BLURRED_BUCKET_NAME must be set")
    	}
    
    	img := vision.NewImageFromURI(fmt.Sprintf("gs://%s/%s", e.Bucket, e.Name))
    
    	resp, err := visionClient.DetectSafeSearch(ctx, img, nil)
    	if err != nil {
    		return fmt.Errorf("AnnotateImage: %w", err)
    	}
    
    	if resp.GetAdult() == visionpb.Likelihood_VERY_LIKELY ||
    		resp.GetViolence() == visionpb.Likelihood_VERY_LIKELY {
    		return blur(ctx, e.Bucket, outputBucket, e.Name)
    	}
    	log.Printf("The image %q was detected as OK.", e.Name)
    	return nil
    }
    

    Java

    @Override
    // Blurs uploaded images that are flagged as Adult or Violence.
    public void accept(GcsEvent event, Context context) {
      // Validate parameters
      if (event.getBucket() == null || event.getName() == null) {
        logger.severe("Error: Malformed GCS event.");
        return;
      }
    
      BlobInfo blobInfo = BlobInfo.newBuilder(event.getBucket(), event.getName()).build();
    
      // Construct URI to GCS bucket and file.
      String gcsPath = String.format("gs://%s/%s", event.getBucket(), event.getName());
      logger.info(String.format("Analyzing %s", event.getName()));
    
      // Construct request.
      ImageSource imgSource = ImageSource.newBuilder().setImageUri(gcsPath).build();
      Image img = Image.newBuilder().setSource(imgSource).build();
      Feature feature = Feature.newBuilder().setType(Type.SAFE_SEARCH_DETECTION).build();
      AnnotateImageRequest request =
          AnnotateImageRequest.newBuilder().addFeatures(feature).setImage(img).build();
      List<AnnotateImageRequest> requests = List.of(request);
    
      // Send request to the Vision API.
      try (ImageAnnotatorClient client = ImageAnnotatorClient.create()) {
        BatchAnnotateImagesResponse response = client.batchAnnotateImages(requests);
        List<AnnotateImageResponse> responses = response.getResponsesList();
        for (AnnotateImageResponse res : responses) {
          if (res.hasError()) {
            logger.info(String.format("Error: %s", res.getError().getMessage()));
            return;
          }
          // Get Safe Search Annotations
          SafeSearchAnnotation annotation = res.getSafeSearchAnnotation();
          if (annotation.getAdultValue() == 5 || annotation.getViolenceValue() == 5) {
            logger.info(String.format("Detected %s as inappropriate.", event.getName()));
            blur(blobInfo);
          } else {
            logger.info(String.format("Detected %s as OK.", event.getName()));
          }
        }
      } catch (IOException e) {
        logger.log(Level.SEVERE, "Error with Vision API: " + e.getMessage(), e);
      }
    }

    Ruby

    # Blurs uploaded images that are flagged as Adult or Violence.
    FunctionsFramework.cloud_event "blur_offensive_images" do |event|
      # Event-triggered Ruby functions receive a CloudEvents::Event::V1 object.
      # See https://cloudevents.github.io/sdk-ruby/latest/CloudEvents/Event/V1.html
      # The storage event payload can be obtained from the event data.
      payload = event.data
      file_name = payload["name"]
      bucket_name = payload["bucket"]
    
      # Ignore already-blurred files
      if file_name.start_with? "blurred-"
        logger.info "The image #{file_name} is already blurred."
        return
      end
    
      # Get image annotations from the Vision service
      logger.info "Analyzing #{file_name}."
      gs_uri = "gs://#{bucket_name}/#{file_name}"
      result = global(:vision_client).safe_search_detection image: gs_uri
      annotation = result.responses.first.safe_search_annotation
    
      # Respond to annotations by possibly blurring the image
      if annotation.adult == :VERY_LIKELY || annotation.violence == :VERY_LIKELY
        logger.info "The image #{file_name} was detected as inappropriate."
        blur_image bucket_name, file_name
      else
        logger.info "The image #{file_name} was detected as OK."
      end
    end

    模糊處理圖片

    在上傳的圖片中偵測到暴力或成人內容時,會呼叫下列函式。函式會下載令人反感的圖片,使用 ImageMagick 模糊處理圖片,然後上傳模糊處理後的圖片覆蓋原始圖片。

    Node.js

    // Blurs the given file using ImageMagick, and uploads it to another bucket.
    const blurImage = async (file, blurredBucketName) => {
      const tempLocalPath = `/tmp/${path.parse(file.name).base}`;
    
      // Download file from bucket.
      try {
        await file.download({destination: tempLocalPath});
    
        console.log(`Downloaded ${file.name} to ${tempLocalPath}.`);
      } catch (err) {
        throw new Error(`File download failed: ${err}`);
      }
    
      await new Promise((resolve, reject) => {
        gm(tempLocalPath)
          .blur(0, 16)
          .write(tempLocalPath, (err, stdout) => {
            if (err) {
              console.error('Failed to blur image.', err);
              reject(err);
            } else {
              console.log(`Blurred image: ${file.name}`);
              resolve(stdout);
            }
          });
      });
    
      // Upload result to a different bucket, to avoid re-triggering this function.
      const blurredBucket = storage.bucket(blurredBucketName);
    
      // Upload the Blurred image back into the bucket.
      const gcsPath = `gs://${blurredBucketName}/${file.name}`;
      try {
        await blurredBucket.upload(tempLocalPath, {destination: file.name});
        console.log(`Uploaded blurred image to: ${gcsPath}`);
      } catch (err) {
        throw new Error(`Unable to upload blurred image to ${gcsPath}: ${err}`);
      }
    
      // Delete the temporary file.
      return fs.unlink(tempLocalPath);
    };

    Python

    # Blurs the given file using ImageMagick.
    def __blur_image(current_blob):
        file_name = current_blob.name
        _, temp_local_filename = tempfile.mkstemp()
    
        # Download file from bucket.
        current_blob.download_to_filename(temp_local_filename)
        print(f"Image {file_name} was downloaded to {temp_local_filename}.")
    
        # Blur the image using ImageMagick.
        with Image(filename=temp_local_filename) as image:
            image.blur(radius=0, sigma=16)
            image.save(filename=temp_local_filename)
    
        print(f"Image {file_name} was blurred.")
    
        # Upload result to a second bucket, to avoid re-triggering the function.
        # You could instead re-upload it to the same bucket + tell your function
        # to ignore files marked as blurred (e.g. those with a "blurred" prefix)
        blur_bucket_name = os.getenv("BLURRED_BUCKET_NAME")
        blur_bucket = storage_client.bucket(blur_bucket_name)
        new_blob = blur_bucket.blob(file_name)
        new_blob.upload_from_filename(temp_local_filename)
        print(f"Blurred image uploaded to: gs://{blur_bucket_name}/{file_name}")
    
        # Delete the temporary file.
        os.remove(temp_local_filename)
    
    

    Go

    
    // blur blurs the image stored at gs://inputBucket/name and stores the result in
    // gs://outputBucket/name.
    func blur(ctx context.Context, inputBucket, outputBucket, name string) error {
    	inputBlob := storageClient.Bucket(inputBucket).Object(name)
    	r, err := inputBlob.NewReader(ctx)
    	if err != nil {
    		return fmt.Errorf("NewReader: %w", err)
    	}
    
    	outputBlob := storageClient.Bucket(outputBucket).Object(name)
    	w := outputBlob.NewWriter(ctx)
    	defer w.Close()
    
    	// Use - as input and output to use stdin and stdout.
    	cmd := exec.Command("convert", "-", "-blur", "0x8", "-")
    	cmd.Stdin = r
    	cmd.Stdout = w
    
    	if err := cmd.Run(); err != nil {
    		return fmt.Errorf("cmd.Run: %w", err)
    	}
    
    	log.Printf("Blurred image uploaded to gs://%s/%s", outputBlob.BucketName(), outputBlob.ObjectName())
    
    	return nil
    }
    

    Java

    // Blurs the file described by blobInfo using ImageMagick,
    // and uploads it to the blurred bucket.
    private static void blur(BlobInfo blobInfo) throws IOException {
      String bucketName = blobInfo.getBucket();
      String fileName = blobInfo.getName();
    
      // Download image
      Blob blob = storage.get(BlobId.of(bucketName, fileName));
      Path download = Paths.get("/tmp/", fileName);
      blob.downloadTo(download);
    
      // Construct the command.
      Path upload = Paths.get("/tmp/", "blurred-" + fileName);
      List<String> args = List.of("convert", download.toString(), "-blur", "0x8", upload.toString());
      try {
        ProcessBuilder pb = new ProcessBuilder(args);
        Process process = pb.start();
        process.waitFor();
      } catch (Exception e) {
        logger.info(String.format("Error: %s", e.getMessage()));
      }
    
      // Upload image to blurred bucket.
      BlobId blurredBlobId = BlobId.of(BLURRED_BUCKET_NAME, fileName);
      BlobInfo blurredBlobInfo =
          BlobInfo.newBuilder(blurredBlobId).setContentType(blob.getContentType()).build();
    
      byte[] blurredFile = Files.readAllBytes(upload);
      storage.create(blurredBlobInfo, blurredFile);
      logger.info(
          String.format("Blurred image uploaded to: gs://%s/%s", BLURRED_BUCKET_NAME, fileName));
    
      // Remove images from fileSystem
      Files.delete(download);
      Files.delete(upload);
    }

    Ruby

    require "tempfile"
    require "mini_magick"
    
    # Blurs the given file using ImageMagick.
    def blur_image bucket_name, file_name
      tempfile = Tempfile.new
      begin
        # Download the image file
        bucket = global(:storage_client).bucket bucket_name
        file = bucket.file file_name
        file.download tempfile
        tempfile.close
    
        # Blur the image using ImageMagick
        MiniMagick::Image.new tempfile.path do |image|
          image.blur "0x16"
        end
        logger.info "Image #{file_name} was blurred"
    
        # Upload result to a second bucket, to avoid re-triggering the function.
        # You could instead re-upload it to the same bucket and tell your function
        # to ignore files marked as blurred (e.g. those with a "blurred" prefix.)
        blur_bucket_name = ENV["BLURRED_BUCKET_NAME"]
        blur_bucket = global(:storage_client).bucket blur_bucket_name
        blur_bucket.create_file tempfile.path, file_name
        logger.info "Blurred image uploaded to gs://#{blur_bucket_name}/#{file_name}"
      ensure
        # Ruby will remove the temp file when garbage collecting the object,
        # but it is good practice to remove it explicitly.
        tempfile.unlink
      end
    end

    部署函式

    如要透過 Storage 觸發條件部署函式,請在包含程式碼範例的目錄中執行下列指令 (如果是 Java,則在 pom.xml 檔案中執行):

    Node.js

    gcloud functions deploy blurOffensiveImages \
    --no-gen2 \
    --runtime=RUNTIME \
    --trigger-bucket=YOUR_INPUT_BUCKET_NAME \
    --set-env-vars=BLURRED_BUCKET_NAME=YOUR_OUTPUT_BUCKET_NAME
    

    Python

    gcloud functions deploy blur_offensive_images \
    --no-gen2 \
    --runtime=RUNTIME \
    --trigger-bucket=YOUR_INPUT_BUCKET_NAME \
    --set-env-vars=BLURRED_BUCKET_NAME=YOUR_OUTPUT_BUCKET_NAME
    

    Go

    gcloud functions deploy BlurOffensiveImages \
    --no-gen2 \
    --runtime=RUNTIME \
    --trigger-bucket=YOUR_INPUT_BUCKET_NAME \
    --set-env-vars=BLURRED_BUCKET_NAME=YOUR_OUTPUT_BUCKET_NAME
    

    Java

    gcloud functions deploy java-blur-function \
    --no-gen2 \
    --entry-point=functions.ImageMagick \
    --runtime=RUNTIME \
    --memory 512MB \
    --trigger-bucket=YOUR_INPUT_BUCKET_NAME \
    --set-env-vars=BLURRED_BUCKET_NAME=YOUR_OUTPUT_BUCKET_NAME
    

    C#

    gcloud functions deploy csharp-blur-function \
    --no-gen2 \
    --entry-point=ImageMagick.Function \
    --runtime=RUNTIME \
    --trigger-bucket=YOUR_INPUT_BUCKET_NAME \
    --set-env-vars=BLURRED_BUCKET_NAME=YOUR_OUTPUT_BUCKET_NAME
    

    Ruby

    gcloud functions deploy blur_offensive_images \
    --no-gen2 \
    --runtime=RUNTIME \
    --trigger-bucket=YOUR_INPUT_BUCKET_NAME \
    --set-env-vars=BLURRED_BUCKET_NAME=YOUR_OUTPUT_BUCKET_NAME
    

    更改下列內容:

    • RUNTIME:以 Ubuntu 18.04 為基礎的執行階段 (後續執行階段不支援 ImageMagick)。
    • YOUR_INPUT_BUCKET_NAME:用於上傳圖片的 Cloud Storage bucket 名稱。
    • YOUR_OUTPUT_BUCKET_NAME:要儲存模糊處理後圖片的 bucket 名稱。

    在本範例中,請勿在 deploy 指令中加入 gs:// 做為 bucket 名稱的一部分。

    上傳圖片

    1. 上傳令人反感的圖片,例如這張食人殭屍圖片:

      gcloud storage cp zombie.jpg gs://YOUR_INPUT_BUCKET_NAME

      其中 YOUR_INPUT_BUCKET_NAME 是您稍早建立來上傳圖片的 Cloud Storage 值區。

    2. 觀察記錄以確定執行已經完成:

      gcloud functions logs read --limit 100
    3. 您可以在先前建立的 YOUR_OUTPUT_BUCKET_NAME Cloud Storage bucket 中查看模糊處理的圖片。

    清除所用資源

    如要避免系統向您的 Google Cloud 帳戶收取本教學課程中所用資源的相關費用,請刪除含有該項資源的專案,或者保留專案但刪除個別資源。

    刪除專案

    如要避免付費,最簡單的方法就是刪除您為了本教學課程所建立的專案。

    如要刪除專案:

    1. In the Google Cloud console, go to the Manage resources page.

      Go to Manage resources

    2. In the project list, select the project that you want to delete, and then click Delete.
    3. In the dialog, type the project ID, and then click Shut down to delete the project.

    刪除函式

    刪除 Cloud Run 函式不會移除儲存在 Cloud Storage 中的任何資源。

    如要刪除您在本教學課程中部署的函式,請執行下列指令:

    Node.js

    gcloud functions delete blurOffensiveImages 

    Python

    gcloud functions delete blur_offensive_images 

    Go

    gcloud functions delete BlurOffensiveImages 

    Java

    gcloud functions delete java-blur-function 

    Ruby

    gcloud functions delete blur_offensive_images 

    您也可以從Google Cloud 控制台刪除 Cloud Run 函式。