Optimiza las herramientas de redes (1a gen.)

La simplicidad de Cloud Run Functions te permite programar código rápidamente y ejecutarlo en un entorno sin servidores. A una escala moderada, el costo de ejecutar funciones es bajo, y puedes considerar que optimizar tu código no es una prioridad importante. Sin embargo, a medida que tu implementación aumenta su escala, optimizar tu código se vuelve cada vez más relevante.

En este documento, se describe cómo optimizar las Herramientas de redes para tus funciones. Algunos de los beneficios de optimizar las Herramientas de redes son los siguientes:

  • Reduce el tiempo de CPU que se usa para establecer conexiones nuevas en cada llamada de función.
  • Reduce la probabilidad de agotar las cuotas de DNS o de conexión.

Cómo mantener conexiones continuas

Esta sección muestra ejemplos sobre cómo mantener conexiones continuas en una función. No hacerlo puede causar que agotes tu cuota de conexión rápidamente.

En esta sección, se abordan los siguientes casos:

  • HTTP/S
  • API de Google

Solicitudes HTTP(S)

El fragmento de código optimizado de más abajo muestra cómo mantener la coherencia de las conexiones en lugar de crear una conexión nueva para cada invocación de función:

Node.js

const fetch = require('node-fetch');

const http = require('http');
const https = require('https');

const functions = require('@google-cloud/functions-framework');

const httpAgent = new http.Agent({keepAlive: true});
const httpsAgent = new https.Agent({keepAlive: true});

/**
 * HTTP Cloud Function that caches an HTTP agent to pool HTTP connections.
 *
 * @param {Object} req Cloud Function request context.
 * @param {Object} res Cloud Function response context.
 */
functions.http('connectionPooling', async (req, res) => {
  try {
    // TODO(optional): replace this with your own URL.
    const url = 'https://www.example.com/';

    // Select the appropriate agent to use based on the URL.
    const agent = url.includes('https') ? httpsAgent : httpAgent;

    const fetchResponse = await fetch(url, {agent});
    const text = await fetchResponse.text();

    res.status(200).send(`Data: ${text}`);
  } catch (err) {
    res.status(500).send(`Error: ${err.message}`);
  }
});

Python

import functions_framework
import requests

# Create a global HTTP session (which provides connection pooling)
session = requests.Session()


@functions_framework.http
def connection_pooling(request):
    """
    HTTP Cloud Function that uses a connection pool to make HTTP requests.
    Args:
        request (flask.Request): The request object.
        <http://flask.pocoo.org/docs/1.0/api/#flask.Request>
    Returns:
        The response text, or any set of values that can be turned into a
        Response object using `make_response`
        <http://flask.pocoo.org/docs/1.0/api/#flask.Flask.make_response>.
    """

    # The URL to send the request to
    url = "http://example.com"

    # Process the request
    response = session.get(url)
    response.raise_for_status()
    return "Success!"

Go


// Package http provides a set of HTTP Cloud Functions samples.
package http

import (
	"fmt"
	"net/http"
	"time"

	"github.com/GoogleCloudPlatform/functions-framework-go/functions"
)

var urlString = "https://example.com"

// client is used to make HTTP requests with a 10 second timeout.
// http.Clients should be reused instead of created as needed.
var client = &http.Client{
	Timeout: 10 * time.Second,
}

func init() {
	functions.HTTP("MakeRequest", MakeRequest)
}

// MakeRequest is an example of making an HTTP request. MakeRequest uses a
// single http.Client for all requests to take advantage of connection
// pooling and caching. See https://godoc.org/net/http#Client.
func MakeRequest(w http.ResponseWriter, r *http.Request) {
	resp, err := client.Get(urlString)
	if err != nil {
		http.Error(w, "Error making request", http.StatusInternalServerError)
		return
	}
	if resp.StatusCode != http.StatusOK {
		msg := fmt.Sprintf("Bad StatusCode: %d", resp.StatusCode)
		http.Error(w, msg, http.StatusInternalServerError)
		return
	}
	fmt.Fprintf(w, "ok")
}

PHP

Te recomendamos usar el framework de HTTP de Guzzle de PHP para enviar solicitudes HTTP, ya que controla las conexiones persistentes de forma automática.

Acceso a las API de Google

En el siguiente ejemplo, se usa Cloud Pub/Sub, pero este enfoque también sirve para otras bibliotecas cliente, como Cloud Natural Language o Cloud Spanner. Ten en cuenta que las mejoras de rendimiento pueden depender de la implementación actual de algunas bibliotecas cliente en particular.

Si se crea un objeto de cliente de Pub/Sub se genera una conexión y dos consultas de DNS por invocación. Para evitar consultas de DNS y conexiones innecesarias, crea el objeto de cliente de Pub/Sub en alcance global, como se indica en el siguiente ejemplo:

Node.js

const functions = require('@google-cloud/functions-framework');
const {PubSub} = require('@google-cloud/pubsub');
const pubsub = new PubSub();

/**
 * HTTP Cloud Function that uses a cached client library instance to
 * reduce the number of connections required per function invocation.
 *
 * @param {Object} req Cloud Function request context.
 * @param {Object} req.body Cloud Function request context body.
 * @param {String} req.body.topic The Cloud Pub/Sub topic to publish to.
 * @param {Object} res Cloud Function response context.
 */
functions.http('gcpApiCall', (req, res) => {
  const topic = pubsub.topic(req.body.topic);

  const data = Buffer.from('Test message');
  topic.publishMessage({data}, err => {
    if (err) {
      res.status(500).send(`Error publishing the message: ${err}`);
    } else {
      res.status(200).send('1 message published');
    }
  });
});

Python

import os

import functions_framework
from google.cloud import pubsub_v1


# Create a global Pub/Sub client to avoid unneeded network activity
pubsub = pubsub_v1.PublisherClient()


@functions_framework.http
def gcp_api_call(request):
    """
    HTTP Cloud Function that uses a cached client library instance to
    reduce the number of connections required per function invocation.
    Args:
        request (flask.Request): The request object.
    Returns:
        The response text, or any set of values that can be turned into a
        Response object using `make_response`
        <http://flask.pocoo.org/docs/1.0/api/#flask.Flask.make_response>.
    """

    """
    The `GCP_PROJECT` environment variable is set automatically in the Python 3.7 runtime.
    In later runtimes, it must be specified by the user upon function deployment.
    See this page for more information:
        https://cloud.google.com/functions/docs/configuring/env-var#python_37_and_go_111
    """
    project = os.getenv("GCP_PROJECT")
    request_json = request.get_json()

    topic_name = request_json["topic"]
    topic_path = pubsub.topic_path(project, topic_name)

    # Process the request
    data = b"Test message"
    pubsub.publish(topic_path, data=data)

    return "1 message published"

Go


// Package contexttip is an example of how to use Pub/Sub and context.Context in
// a Cloud Function.
package contexttip

import (
	"context"
	"encoding/json"
	"fmt"
	"log"
	"net/http"
	"os"
	"sync"

	"cloud.google.com/go/pubsub"
	"github.com/GoogleCloudPlatform/functions-framework-go/functions"
)

// client is a global Pub/Sub client, initialized once per instance.
var client *pubsub.Client
var once sync.Once

// createClient creates the global pubsub Client
func createClient() {
	// GOOGLE_CLOUD_PROJECT is a user-set environment variable.
	var projectID = os.Getenv("GOOGLE_CLOUD_PROJECT")
	// err is pre-declared to avoid shadowing client.
	var err error

	// client is initialized with context.Background() because it should
	// persist between function invocations.
	client, err = pubsub.NewClient(context.Background(), projectID)
	if err != nil {
		log.Fatalf("pubsub.NewClient: %v", err)
	}
}

func init() {
	// register http function
	functions.HTTP("PublishMessage", PublishMessage)
}

type publishRequest struct {
	Topic   string `json:"topic"`
	Message string `json:"message"`
}

// PublishMessage publishes a message to Pub/Sub. PublishMessage only works
// with topics that already exist.
func PublishMessage(w http.ResponseWriter, r *http.Request) {
	// use of sync.Once ensures client is only created once.
	once.Do(createClient)
	// Parse the request body to get the topic name and message.
	p := publishRequest{}

	if err := json.NewDecoder(r.Body).Decode(&p); err != nil {
		log.Printf("json.NewDecoder: %v", err)
		http.Error(w, "Error parsing request", http.StatusBadRequest)
		return
	}

	if p.Topic == "" || p.Message == "" {
		s := "missing 'topic' or 'message' parameter"
		log.Println(s)
		http.Error(w, s, http.StatusBadRequest)
		return
	}

	m := &pubsub.Message{
		Data: []byte(p.Message),
	}
	// Publish and Get use r.Context() because they are only needed for this
	// function invocation. If this were a background function, they would use
	// the ctx passed as an argument.
	id, err := client.Topic(p.Topic).Publish(r.Context(), m).Get(r.Context())
	if err != nil {
		log.Printf("topic(%s).Publish.Get: %v", p.Topic, err)
		http.Error(w, "Error publishing message", http.StatusInternalServerError)
		return
	}
	fmt.Fprintf(w, "Message published: %v", id)
}

Se restablece la conexión saliente

Las transmisiones de conexión de tu contenedor a Internet y VPC pueden finalizarse y reemplazarse de forma ocasional cuando se reinicia o actualiza la infraestructura subyacente. Si tu aplicación vuelve a usar conexiones de larga duración, te recomendamos entonces que configures tu aplicación para restablecer las conexiones para evitar la reutilización de una conexión inactiva.

Prueba la carga de tu función

Para medir cuántas conexiones ejecuta en promedio tu función, solo debes implementarla como una función de HTTP y usar un marco de trabajo de prueba de rendimiento para invocarla con una cierta cantidad de QPS. Una opción posible es Artillery, que puedes invocar con una sola línea:

$ artillery quick -d 300 -r 30 URL

Con este comando, se recupera la URL dada a 30 QPS por 300 segundos.

Después de ejecutar la prueba, verifica el uso de tu cuota de conexión en la página de cuotas de la API de Cloud Run Functions en la consola de Google Cloud. Si el uso se mantiene alrededor de 30 (o sus múltiplos), estás estableciendo una (o varias) conexiones en cada invocación. Después de optimizar el código, deberías ver que se ejecutan unas pocas conexiones (entre 10 y 30) solo al comienzo de la prueba.

También puedes comparar el costo de CPU antes y después de la optimización en el gráfico de cuota de CPU, en la misma página.