Comportement des séparateurs de documents

La sortie du processeur de fractionnement contient des informations de fractionnement pour le document d'entrée, y compris un score de confiance. L'API Document AI génère un objet JSON Document, et le format de sortie utilise le champ entities pour représenter les fractionnements de documents. Les informations supplémentaires dépendent du type de séparateur spécifique.

  • Entity.type spécifie la classification des documents. Pour obtenir la liste complète des types de documents pouvant être identifiés, consultez les listes suivantes.

  • Entity.pageAnchor.pageRefs[] spécifie les pages contenant chaque sous-document. Notez que pageRefs[].page est basé sur zéro et qu'il s'agit de l'indice du champ document.pages[].

Le séparateur n'est pas conçu pour diviser des documents logiques de plus de 30 pages. Les documents logiques de plus de 30 pages (par exemple, un relevé bancaire de 40 pages) peuvent être divisés en deux documents ou plus et classés séparément.

Les séparateurs identifient les limites de page, mais ne divisent pas le document d'entrée pour vous. Le SDK Document AI Toolbox fournit des fonctions utilitaires qui peuvent diviser le document d'entrée en fonction de la sortie d'un processeur de division.

Types de documents identifiés

[1] L'analyseur correspondant à ce formulaire n'est pas compatible avec ce type de document. Cela signifie que le séparateur peut identifier et classer les documents de ce type, mais Document AI ne fournit pas d'analyseur pour extraire des informations.

Exemples de sorties

Processeurs Exemples de sortie

Exemples de code

Les séparateurs identifient les limites de page, mais ne séparent pas réellement le document d'entrée. Vous pouvez utiliser la boîte à outils Document AI pour diviser physiquement un fichier PDF à l'aide des limites de page. Les exemples de code suivants impriment les plages de pages sans diviser le fichier PDF:

Java

Pour en savoir plus, consultez la documentation de référence de l'API Document AI Java.

Pour vous authentifier auprès de Document AI, configurez les Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.


import com.google.cloud.documentai.v1beta3.Document;
import com.google.cloud.documentai.v1beta3.DocumentProcessorServiceClient;
import com.google.cloud.documentai.v1beta3.DocumentProcessorServiceSettings;
import com.google.cloud.documentai.v1beta3.ProcessRequest;
import com.google.cloud.documentai.v1beta3.ProcessResponse;
import com.google.cloud.documentai.v1beta3.RawDocument;
import com.google.protobuf.ByteString;
import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Paths;
import java.util.List;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeoutException;

public class ProcessSplitterDocument {
  public static void processSplitterDocument()
      throws IOException, InterruptedException, ExecutionException, TimeoutException {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "your-project-id";
    String location = "your-project-location"; // Format is "us" or "eu".
    String processerId = "your-processor-id";
    String filePath = "path/to/input/file.pdf";
    processSplitterDocument(projectId, location, processerId, filePath);
  }

  public static void processSplitterDocument(
      String projectId, String location, String processorId, String filePath)
      throws IOException, InterruptedException, ExecutionException, TimeoutException {
    // Initialize client that will be used to send requests. This client only needs
    // to be created
    // once, and can be reused for multiple requests. After completing all of your
    // requests, call
    // the "close" method on the client to safely clean up any remaining background
    // resources.
    String endpoint = String.format("%s-documentai.googleapis.com:443", location);
    DocumentProcessorServiceSettings settings =
        DocumentProcessorServiceSettings.newBuilder().setEndpoint(endpoint).build();
    try (DocumentProcessorServiceClient client = DocumentProcessorServiceClient.create(settings)) {
      // The full resource name of the processor, e.g.:
      // projects/project-id/locations/location/processor/processor-id
      // You must create new processors in the Cloud Console first
      String name =
          String.format("projects/%s/locations/%s/processors/%s", projectId, location, processorId);

      // Read the file.
      byte[] imageFileData = Files.readAllBytes(Paths.get(filePath));

      // Convert the image data to a Buffer and base64 encode it.
      ByteString content = ByteString.copyFrom(imageFileData);

      RawDocument document =
          RawDocument.newBuilder().setContent(content).setMimeType("application/pdf").build();

      // Configure the process request.
      ProcessRequest request =
          ProcessRequest.newBuilder().setName(name).setRawDocument(document).build();

      // Recognizes text entities in the PDF document
      ProcessResponse result = client.processDocument(request);
      Document documentResponse = result.getDocument();

      System.out.println("Document processing complete.");

      // Read the splitter output from the document splitter processor:
      // https://cloud.google.com/document-ai/docs/processors-list#processor_doc-splitter
      // This processor only provides text for the document and information on how
      // to split the document on logical boundaries. To identify and extract text,
      // form elements, and entities please see other processors like the OCR, form,
      // and specalized processors.
      List<Document.Entity> entities = documentResponse.getEntitiesList();
      System.out.printf("Found %d subdocuments:\n", entities.size());
      for (Document.Entity entity : entities) {
        float entityConfidence = entity.getConfidence();
        String pagesRangeText = pageRefsToString(entity.getPageAnchor().getPageRefsList());
        String subdocumentType = entity.getType();
        if (subdocumentType.isEmpty()) {
          System.out.printf(
              "%.2f%% confident that %s a subdocument.\n", entityConfidence * 100, pagesRangeText);
        } else {
          System.out.printf(
              "%.2f%% confident that %s a '%s' subdocument.\n",
              entityConfidence * 100, pagesRangeText, subdocumentType);
        }
      }
    }
  }

  // Converts page reference(s) to a string describing the page or page range.
  private static String pageRefsToString(List<Document.PageAnchor.PageRef> pageRefs) {
    if (pageRefs.size() == 1) {
      return String.format("page %d is", pageRefs.get(0).getPage() + 1);
    } else {
      long start = pageRefs.get(0).getPage() + 1;
      long end = pageRefs.get(1).getPage() + 1;
      return String.format("pages %d to %d are", start, end);
    }
  }
}

Node.js

Pour en savoir plus, consultez la documentation de référence de l'API Document AI Node.js.

Pour vous authentifier auprès de Document AI, configurez les Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.

/**
 * TODO(developer): Uncomment these variables before running the sample.
 */
// const projectId = 'YOUR_PROJECT_ID';
// const location = 'YOUR_PROJECT_LOCATION'; // Format is 'us' or 'eu'
// const processorId = 'YOUR_PROCESSOR_ID'; // Create processor in Cloud Console
// const filePath = '/path/to/local/pdf';

const {DocumentProcessorServiceClient} =
  require('@google-cloud/documentai').v1beta3;

// Instantiates a client
const client = new DocumentProcessorServiceClient();

async function processDocument() {
  // The full resource name of the processor, e.g.:
  // projects/project-id/locations/location/processor/processor-id
  // You must create new processors in the Cloud Console first
  const name = `projects/${projectId}/locations/${location}/processors/${processorId}`;

  // Read the file into memory.
  const fs = require('fs').promises;
  const imageFile = await fs.readFile(filePath);

  // Convert the image data to a Buffer and base64 encode it.
  const encodedImage = Buffer.from(imageFile).toString('base64');

  const request = {
    name,
    rawDocument: {
      content: encodedImage,
      mimeType: 'application/pdf',
    },
  };

  // Recognizes text entities in the PDF document
  const [result] = await client.processDocument(request);

  console.log('Document processing complete.');

  // Read fields specificly from the specalized US drivers license processor:
  // https://cloud.google.com/document-ai/docs/processors-list#processor_us-driver-license-parser
  // retriving data from other specalized processors follow a similar pattern.
  // For a complete list of processors see:
  // https://cloud.google.com/document-ai/docs/processors-list
  //
  // OCR and other data is also present in the quality processor's response.
  // Please see the OCR and other samples for how to parse other data in the
  // response.
  const {document} = result;
  console.log(`Found ${document.entities.length} subdocuments:`);
  for (const entity of document.entities) {
    const conf = entity.confidence * 100;
    const pagesRange = pageRefsToRange(entity.pageAnchor.pageRefs);
    if (entity.type !== '') {
      console.log(
        `${conf.toFixed(2)}% confident that ${pagesRange} a "${
          entity.type
        }" subdocument.`
      );
    } else {
      console.log(
        `${conf.toFixed(2)}% confident that ${pagesRange} a subdocument.`
      );
    }
  }
}

// Converts a page ref to a string describing the page or page range.
const pageRefsToRange = pageRefs => {
  if (pageRefs.length === 1) {
    const num = parseInt(pageRefs[0].page) + 1 || 1;
    return `page ${num} is`;
  } else {
    const start = parseInt(pageRefs[0].page) + 1 || 1;
    const end = parseInt(pageRefs[1].page) + 1;
    return `pages ${start} to ${end} are`;
  }
};

Python

Pour en savoir plus, consultez la documentation de référence de l'API Document AI Python.

Pour vous authentifier auprès de Document AI, configurez les Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.


from typing import Optional, Sequence

from google.api_core.client_options import ClientOptions
from google.cloud import documentai

# TODO(developer): Uncomment these variables before running the sample.
# project_id = "YOUR_PROJECT_ID"
# location = "YOUR_PROCESSOR_LOCATION" # Format is "us" or "eu"
# processor_id = "YOUR_PROCESSOR_ID" # Create processor before running sample
# processor_version = "rc" # Refer to https://cloud.google.com/document-ai/docs/manage-processor-versions for more information
# file_path = "/path/to/local/pdf"
# mime_type = "application/pdf" # Refer to https://cloud.google.com/document-ai/docs/file-types for supported file types


def process_document_splitter_sample(
    project_id: str,
    location: str,
    processor_id: str,
    processor_version: str,
    file_path: str,
    mime_type: str,
) -> None:
    # Online processing request to Document AI
    document = process_document(
        project_id, location, processor_id, processor_version, file_path, mime_type
    )

    # Read the splitter output from a document splitter/classifier processor:
    # e.g. https://cloud.google.com/document-ai/docs/processors-list#processor_procurement-document-splitter
    # This processor only provides text for the document and information on how
    # to split the document on logical boundaries. To identify and extract text,
    # form elements, and entities please see other processors like the OCR, form,
    # and specalized processors.

    print(f"Found {len(document.entities)} subdocuments:")
    for entity in document.entities:
        conf_percent = f"{entity.confidence:.1%}"
        pages_range = page_refs_to_string(entity.page_anchor.page_refs)

        # Print subdocument type information, if available
        if entity.type_:
            print(
                f"{conf_percent} confident that {pages_range} a '{entity.type_}' subdocument."
            )
        else:
            print(f"{conf_percent} confident that {pages_range} a subdocument.")


def page_refs_to_string(
    page_refs: Sequence[documentai.Document.PageAnchor.PageRef],
) -> str:
    """Converts a page ref to a string describing the page or page range."""
    pages = [str(int(page_ref.page) + 1) for page_ref in page_refs]
    if len(pages) == 1:
        return f"page {pages[0]} is"
    else:
        return f"pages {', '.join(pages)} are"




def process_document(
    project_id: str,
    location: str,
    processor_id: str,
    processor_version: str,
    file_path: str,
    mime_type: str,
    process_options: Optional[documentai.ProcessOptions] = None,
) -> documentai.Document:
    # You must set the `api_endpoint` if you use a location other than "us".
    client = documentai.DocumentProcessorServiceClient(
        client_options=ClientOptions(
            api_endpoint=f"{location}-documentai.googleapis.com"
        )
    )

    # The full resource name of the processor version, e.g.:
    # `projects/{project_id}/locations/{location}/processors/{processor_id}/processorVersions/{processor_version_id}`
    # You must create a processor before running this sample.
    name = client.processor_version_path(
        project_id, location, processor_id, processor_version
    )

    # Read the file into memory
    with open(file_path, "rb") as image:
        image_content = image.read()

    # Configure the process request
    request = documentai.ProcessRequest(
        name=name,
        raw_document=documentai.RawDocument(content=image_content, mime_type=mime_type),
        # Only supported for Document OCR processor
        process_options=process_options,
    )

    result = client.process_document(request=request)

    # For a full list of `Document` object attributes, reference this page:
    # https://cloud.google.com/document-ai/docs/reference/rest/v1/Document
    return result.document

L'exemple de code suivant utilise la boîte à outils Document AI pour diviser un fichier PDF à l'aide des limites de page d'un Document traité.

Python

Pour en savoir plus, consultez la documentation de référence de l'API Document AI Python.

Pour vous authentifier auprès de Document AI, configurez les Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.


from google.cloud.documentai_toolbox import document

# TODO(developer): Uncomment these variables before running the sample.
# Given a local document.proto or sharded document.proto from a splitter/classifier in path
# document_path = "path/to/local/document.json"
# pdf_path = "path/to/local/document.pdf"
# output_path = "resources/output/"


def split_pdf_sample(document_path: str, pdf_path: str, output_path: str) -> None:
    wrapped_document = document.Document.from_document_path(document_path=document_path)

    output_files = wrapped_document.split_pdf(
        pdf_path=pdf_path, output_path=output_path
    )

    print("Document Successfully Split")
    for output_file in output_files:
        print(output_file)