Elaborare un documento utilizzando un processore dell'analizzatore sintattico di moduli

Invia una richiesta di elaborazione online a un processore dell'analizzatore sintattico di moduli ed esegue l'analisi della risposta. Estrae e stampa campi e tabelle dei moduli.

Per saperne di più

Per la documentazione dettagliata che include questo esempio di codice, consulta quanto segue:

Esempio di codice

Java

Per ulteriori informazioni, consulta la documentazione di riferimento dell'API Document AI Java.

Per autenticarti a Document AI, configura le credenziali predefinite dell'applicazione. Per ulteriori informazioni, consulta Configurare l'autenticazione per un ambiente di sviluppo locale.


import com.google.cloud.documentai.v1beta3.Document;
import com.google.cloud.documentai.v1beta3.DocumentProcessorServiceClient;
import com.google.cloud.documentai.v1beta3.DocumentProcessorServiceSettings;
import com.google.cloud.documentai.v1beta3.ProcessRequest;
import com.google.cloud.documentai.v1beta3.ProcessResponse;
import com.google.cloud.documentai.v1beta3.RawDocument;
import com.google.protobuf.ByteString;
import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Paths;
import java.util.List;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeoutException;

public class ProcessFormDocument {
  public static void processFormDocument()
      throws IOException, InterruptedException, ExecutionException, TimeoutException {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "your-project-id";
    String location = "your-project-location"; // Format is "us" or "eu".
    String processerId = "your-processor-id";
    String filePath = "path/to/input/file.pdf";
    processFormDocument(projectId, location, processerId, filePath);
  }

  public static void processFormDocument(
      String projectId, String location, String processorId, String filePath)
      throws IOException, InterruptedException, ExecutionException, TimeoutException {
    // Initialize client that will be used to send requests. This client only needs
    // to be created
    // once, and can be reused for multiple requests. After completing all of your
    // requests, call
    // the "close" method on the client to safely clean up any remaining background
    // resources.
    String endpoint = String.format("%s-documentai.googleapis.com:443", location);
    DocumentProcessorServiceSettings settings =
        DocumentProcessorServiceSettings.newBuilder().setEndpoint(endpoint).build();
    try (DocumentProcessorServiceClient client = DocumentProcessorServiceClient.create(settings)) {
      // The full resource name of the processor, e.g.:
      // projects/project-id/locations/location/processor/processor-id
      // You must create new processors in the Cloud Console first
      String name =
          String.format("projects/%s/locations/%s/processors/%s", projectId, location, processorId);

      // Read the file.
      byte[] imageFileData = Files.readAllBytes(Paths.get(filePath));

      // Convert the image data to a Buffer and base64 encode it.
      ByteString content = ByteString.copyFrom(imageFileData);

      RawDocument document =
          RawDocument.newBuilder().setContent(content).setMimeType("application/pdf").build();

      // Configure the process request.
      ProcessRequest request =
          ProcessRequest.newBuilder().setName(name).setRawDocument(document).build();

      // Recognizes text entities in the PDF document
      ProcessResponse result = client.processDocument(request);
      Document documentResponse = result.getDocument();

      System.out.println("Document processing complete.");

      // Read the text recognition output from the processor
      // For a full list of Document object attributes,
      // please reference this page:
      // https://googleapis.dev/java/google-cloud-document-ai/latest/index.html

      // Get all of the document text as one big string
      String text = documentResponse.getText();
      System.out.printf("Full document text: '%s'\n", removeNewlines(text));

      // Read the text recognition output from the processor
      List<Document.Page> pages = documentResponse.getPagesList();
      System.out.printf("There are %s page(s) in this document.\n", pages.size());

      for (Document.Page page : pages) {
        System.out.printf("\n\n**** Page %d ****\n", page.getPageNumber());

        List<Document.Page.Table> tables = page.getTablesList();
        System.out.printf("Found %d table(s):\n", tables.size());
        for (Document.Page.Table table : tables) {
          printTableInfo(table, text);
        }

        List<Document.Page.FormField> formFields = page.getFormFieldsList();
        System.out.printf("Found %d form fields:\n", formFields.size());
        for (Document.Page.FormField formField : formFields) {
          String fieldName = getLayoutText(formField.getFieldName().getTextAnchor(), text);
          String fieldValue = getLayoutText(formField.getFieldValue().getTextAnchor(), text);
          System.out.printf(
              "    * '%s': '%s'\n", removeNewlines(fieldName), removeNewlines(fieldValue));
        }
      }
    }
  }

  private static void printTableInfo(Document.Page.Table table, String text) {
    Document.Page.Table.TableRow firstBodyRow = table.getBodyRows(0);
    int columnCount = firstBodyRow.getCellsCount();
    System.out.printf(
        "    Table with %d columns and %d rows:\n", columnCount, table.getBodyRowsCount());

    Document.Page.Table.TableRow headerRow = table.getHeaderRows(0);
    StringBuilder headerRowText = new StringBuilder();
    for (Document.Page.Table.TableCell cell : headerRow.getCellsList()) {
      String columnName = getLayoutText(cell.getLayout().getTextAnchor(), text);
      headerRowText.append(String.format("%s | ", removeNewlines(columnName)));
    }
    headerRowText.setLength(headerRowText.length() - 3);
    System.out.printf("        Collumns: %s\n", headerRowText.toString());

    StringBuilder firstRowText = new StringBuilder();
    for (Document.Page.Table.TableCell cell : firstBodyRow.getCellsList()) {
      String cellText = getLayoutText(cell.getLayout().getTextAnchor(), text);
      firstRowText.append(String.format("%s | ", removeNewlines(cellText)));
    }
    firstRowText.setLength(firstRowText.length() - 3);
    System.out.printf("        First row data: %s\n", firstRowText.toString());
  }

  // Extract shards from the text field
  private static String getLayoutText(Document.TextAnchor textAnchor, String text) {
    if (textAnchor.getTextSegmentsList().size() > 0) {
      int startIdx = (int) textAnchor.getTextSegments(0).getStartIndex();
      int endIdx = (int) textAnchor.getTextSegments(0).getEndIndex();
      return text.substring(startIdx, endIdx);
    }
    return "[NO TEXT]";
  }

  private static String removeNewlines(String s) {
    return s.replace("\n", "").replace("\r", "");
  }
}

Node.js

Per ulteriori informazioni, consulta la documentazione di riferimento dell'API Document AI Node.js.

Per autenticarti a Document AI, configura le credenziali predefinite dell'applicazione. Per ulteriori informazioni, consulta Configurare l'autenticazione per un ambiente di sviluppo locale.

/**
 * TODO(developer): Uncomment these variables before running the sample.
 */
// const projectId = 'YOUR_PROJECT_ID';
// const location = 'YOUR_PROJECT_LOCATION'; // Format is 'us' or 'eu'
// const processorId = 'YOUR_PROCESSOR_ID'; // Create processor in Cloud Console
// const filePath = '/path/to/local/pdf';

const {DocumentProcessorServiceClient} =
  require('@google-cloud/documentai').v1beta3;

// Instantiates a client
const client = new DocumentProcessorServiceClient();

async function processDocument() {
  // The full resource name of the processor, e.g.:
  // projects/project-id/locations/location/processor/processor-id
  // You must create new processors in the Cloud Console first
  const name = `projects/${projectId}/locations/${location}/processors/${processorId}`;

  // Read the file into memory.
  const fs = require('fs').promises;
  const imageFile = await fs.readFile(filePath);

  // Convert the image data to a Buffer and base64 encode it.
  const encodedImage = Buffer.from(imageFile).toString('base64');

  const request = {
    name,
    rawDocument: {
      content: encodedImage,
      mimeType: 'application/pdf',
    },
  };

  // Recognizes text entities in the PDF document
  const [result] = await client.processDocument(request);

  console.log('Document processing complete.');

  // Read the table and form fields output from the processor
  // The form processor also contains OCR data. For more information
  // on how to parse OCR data please see the OCR sample.
  // For a full list of Document object attributes,
  // please reference this page: https://googleapis.dev/nodejs/documentai/latest/index.html
  const {document} = result;
  const {text} = document;
  console.log(`Full document text: ${JSON.stringify(text)}`);
  console.log(`There are ${document.pages.length} page(s) in this document.`);

  for (const page of document.pages) {
    console.log(`\n\n**** Page ${page.pageNumber} ****`);

    console.log(`Found ${page.tables.length} table(s):`);
    for (const table of page.tables) {
      const numCollumns = table.headerRows[0].cells.length;
      const numRows = table.bodyRows.length;
      console.log(`Table with ${numCollumns} columns and ${numRows} rows:`);
      printTableInfo(table, text);
    }
    console.log(`Found ${page.formFields.length} form field(s):`);
    for (const field of page.formFields) {
      const fieldName = getText(field.fieldName.textAnchor, text);
      const fieldValue = getText(field.fieldValue.textAnchor, text);
      console.log(
        `\t* ${JSON.stringify(fieldName)}: ${JSON.stringify(fieldValue)}`
      );
    }
  }
}

const printTableInfo = (table, text) => {
  // Print header row
  let headerRowText = '';
  for (const headerCell of table.headerRows[0].cells) {
    const headerCellText = getText(headerCell.layout.textAnchor, text);
    headerRowText += `${JSON.stringify(headerCellText.trim())} | `;
  }
  console.log(
    `Collumns: ${headerRowText.substring(0, headerRowText.length - 3)}`
  );
  // Print first body row
  let bodyRowText = '';
  for (const bodyCell of table.bodyRows[0].cells) {
    const bodyCellText = getText(bodyCell.layout.textAnchor, text);
    bodyRowText += `${JSON.stringify(bodyCellText.trim())} | `;
  }
  console.log(
    `First row data: ${bodyRowText.substring(0, bodyRowText.length - 3)}`
  );
};

// Extract shards from the text field
const getText = (textAnchor, text) => {
  if (!textAnchor.textSegments || textAnchor.textSegments.length === 0) {
    return '';
  }

  // First shard in document doesn't have startIndex property
  const startIndex = textAnchor.textSegments[0].startIndex || 0;
  const endIndex = textAnchor.textSegments[0].endIndex;

  return text.substring(startIndex, endIndex);
};

Python

Per ulteriori informazioni, consulta la documentazione di riferimento dell'API Document AI Python.

Per autenticarti a Document AI, configura le credenziali predefinite dell'applicazione. Per ulteriori informazioni, consulta Configurare l'autenticazione per un ambiente di sviluppo locale.


from typing import Optional, Sequence

from google.api_core.client_options import ClientOptions
from google.cloud import documentai

# TODO(developer): Uncomment these variables before running the sample.
# project_id = "YOUR_PROJECT_ID"
# location = "YOUR_PROCESSOR_LOCATION" # Format is "us" or "eu"
# processor_id = "YOUR_PROCESSOR_ID" # Create processor before running sample
# processor_version = "rc" # Refer to https://cloud.google.com/document-ai/docs/manage-processor-versions for more information
# file_path = "/path/to/local/pdf"
# mime_type = "application/pdf" # Refer to https://cloud.google.com/document-ai/docs/file-types for supported file types


def process_document_form_sample(
    project_id: str,
    location: str,
    processor_id: str,
    processor_version: str,
    file_path: str,
    mime_type: str,
) -> documentai.Document:
    # Online processing request to Document AI
    document = process_document(
        project_id, location, processor_id, processor_version, file_path, mime_type
    )

    # Read the table and form fields output from the processor
    # The form processor also contains OCR data. For more information
    # on how to parse OCR data please see the OCR sample.

    text = document.text
    print(f"Full document text: {repr(text)}\n")
    print(f"There are {len(document.pages)} page(s) in this document.")

    # Read the form fields and tables output from the processor
    for page in document.pages:
        print(f"\n\n**** Page {page.page_number} ****")

        print(f"\nFound {len(page.tables)} table(s):")
        for table in page.tables:
            num_columns = len(table.header_rows[0].cells)
            num_rows = len(table.body_rows)
            print(f"Table with {num_columns} columns and {num_rows} rows:")

            # Print header rows
            print("Columns:")
            print_table_rows(table.header_rows, text)
            # Print body rows
            print("Table body data:")
            print_table_rows(table.body_rows, text)

        print(f"\nFound {len(page.form_fields)} form field(s):")
        for field in page.form_fields:
            name = layout_to_text(field.field_name, text)
            value = layout_to_text(field.field_value, text)
            print(f"    * {repr(name.strip())}: {repr(value.strip())}")

    # Supported in version `pretrained-form-parser-v2.0-2022-11-10` and later.
    # For more information: https://cloud.google.com/document-ai/docs/form-parser
    if document.entities:
        print(f"Found {len(document.entities)} generic entities:")
        for entity in document.entities:
            print_entity(entity)
            # Print Nested Entities
            for prop in entity.properties:
                print_entity(prop)

    return document


def print_table_rows(
    table_rows: Sequence[documentai.Document.Page.Table.TableRow], text: str
) -> None:
    for table_row in table_rows:
        row_text = ""
        for cell in table_row.cells:
            cell_text = layout_to_text(cell.layout, text)
            row_text += f"{repr(cell_text.strip())} | "
        print(row_text)




def print_entity(entity: documentai.Document.Entity) -> None:
    # Fields detected. For a full list of fields for each processor see
    # the processor documentation:
    # https://cloud.google.com/document-ai/docs/processors-list
    key = entity.type_

    # Some other value formats in addition to text are available
    # e.g. dates: `entity.normalized_value.date_value.year`
    text_value = entity.text_anchor.content or entity.mention_text
    confidence = entity.confidence
    normalized_value = entity.normalized_value.text
    print(f"    * {repr(key)}: {repr(text_value)} ({confidence:.1%} confident)")

    if normalized_value:
        print(f"    * Normalized Value: {repr(normalized_value)}")




def process_document(
    project_id: str,
    location: str,
    processor_id: str,
    processor_version: str,
    file_path: str,
    mime_type: str,
    process_options: Optional[documentai.ProcessOptions] = None,
) -> documentai.Document:
    # You must set the `api_endpoint` if you use a location other than "us".
    client = documentai.DocumentProcessorServiceClient(
        client_options=ClientOptions(
            api_endpoint=f"{location}-documentai.googleapis.com"
        )
    )

    # The full resource name of the processor version, e.g.:
    # `projects/{project_id}/locations/{location}/processors/{processor_id}/processorVersions/{processor_version_id}`
    # You must create a processor before running this sample.
    name = client.processor_version_path(
        project_id, location, processor_id, processor_version
    )

    # Read the file into memory
    with open(file_path, "rb") as image:
        image_content = image.read()

    # Configure the process request
    request = documentai.ProcessRequest(
        name=name,
        raw_document=documentai.RawDocument(content=image_content, mime_type=mime_type),
        # Only supported for Document OCR processor
        process_options=process_options,
    )

    result = client.process_document(request=request)

    # For a full list of `Document` object attributes, reference this page:
    # https://cloud.google.com/document-ai/docs/reference/rest/v1/Document
    return result.document




def layout_to_text(layout: documentai.Document.Page.Layout, text: str) -> str:
    """
    Document AI identifies text in different parts of the document by their
    offsets in the entirety of the document"s text. This function converts
    offsets to a string.
    """
    # If a text segment spans several lines, it will
    # be stored in different text segments.
    return "".join(
        text[int(segment.start_index) : int(segment.end_index)]
        for segment in layout.text_anchor.text_segments
    )

Passaggi successivi

Per cercare e filtrare i sample di codice per altri Google Cloud prodotti, consulta il Google Cloud browser di sample.