Cómo migrar versiones de procesadores
En esta página, se incluyen los pasos para migrar las versiones del procesador entrenado de Document AI de un proyecto a otro, junto con el esquema del conjunto de datos y las muestras del procesador de origen al de destino. Estos pasos automatizan el proceso de importar la versión del procesador, implementarla y configurarla como la versión predeterminada en el proyecto de destino.
Antes de comenzar
- Obtén un Google Cloud ID de proyecto.
- Tener el ID del procesador de Document AI
- Tener Cloud Storage
- Usa Python: Notebook de Jupyter (Vertex AI).
- Necesitas permisos para otorgar acceso a la cuenta de servicio en los proyectos de origen y de destino.
Procedimiento paso a paso
El procedimiento se describe en los siguientes pasos.
Paso 1: Identifica la cuenta de servicio asociada con el notebook de Vertex AI
!gcloud config list account
Resultado:
[core]
account = example@automl-project.iam.gserviceaccount.com
Your active configuration is: [default]
Paso 2: Otorga los permisos necesarios a la cuenta de servicio
En el Google Cloud proyecto que es el destino previsto para la migración, agrega la cuenta de servicio que se adquirió en el paso anterior como principal y asigna los dos siguientes roles:
- Administrador de Document AI
- Administrador de almacenamiento
Consulta Otorga roles a cuentas de servicio y Claves de encriptación administradas por el cliente (CMEK) para obtener más información.
Para que la migración funcione, la cuenta de servicio que se usa para ejecutar este notebook debe tener lo siguiente:
- Roles en los proyectos de origen y destino para crear el bucket del conjunto de datos o crearlo si no existe, así como permisos de lectura y escritura para todos los objetos
- Rol de editor de Document AI en el proyecto de origen, como se describe en Cómo importar una versión del procesador
Descarga una clave JSON para la cuenta de servicio, de modo que puedas autenticarla y autorizarla como cuenta de servicio. Para obtener más información, consulta Claves de cuentas de servicio.
Siguiente:
- Ve a la cuenta de servicio.
- Selecciona la cuenta de servicio que se usará para realizar esta tarea.
- Ve a la pestaña Claves, haz clic en
Add Key
y, luego, elige Crear clave nueva. - Selecciona el tipo de clave (preferentemente JSON).
Haz clic en
Create
y descarga el archivo en una ruta de acceso específica.Actualiza la ruta de acceso en la variable
service_account_key
en el siguiente fragmento.
service_account_key='path_to_sa_key.json'
from google.oauth2 import service_account
from google.cloud import storage
# Authenticate the service account
credentials = service_account.Credentials.from_service_account_file(
service_account_key
)
# pass this credentials variable to all client initializations
# storage_client = storage.Client(credentials=credentials)
# docai_client = documentai.DocumentProcessorServiceClient(credentials=credentials)
Paso 3: Importa bibliotecas
import time
from pathlib import Path
from typing import Optional, Tuple
from google.cloud.documentai_v1beta3.services.document_service import pagers
from google.api_core.client_options import ClientOptions
from google.api_core.operation import Operation
from google.cloud import documentai_v1beta3 as documentai
from google.cloud import storage
from tqdm import tqdm
Paso 4: Ingresa los detalles
- source_project_id: Proporciona el ID del proyecto de origen.
- source_location: Proporciona la ubicación del procesador de origen (
us
oeu
). - source_processor_id: Proporciona el Google Cloud ID del procesador de Document AI.
- source_processor_version_to_import: Proporciona el Google Cloud ID de la versión del procesador de Document AI para la versión entrenada.
- migrate_dataset: Proporciona este valor como
True
oFalse
. Si quieres migrar el conjunto de datos del procesador de origen al procesador de destino, proporcionaTrue
; de lo contrario, proporcionaFalse
. El valor predeterminado esFalse
. - source_exported_gcs_path: Proporciona la ruta de acceso de Cloud Storage para almacenar archivos JSON.
- destination_project_id: Proporciona el ID del proyecto de destino.
- destination_processor_id: Proporciona el ID del procesador de IA de documentos,
""
oprocessor_id
, del proyecto de destino. Google Cloud
source_project_id = "source-project-id"
source_location = "processor-location"
source_processor_id = "source-processor-id"
source_processor_version_to_import = "source-processor-version-id"
migrate_dataset = False # Either True or False
source_exported_gcs_path = (
"gs://bucket/path/to/export_dataset/"
)
destination_project_id = "< destination-project-id >"
# Give an empty string if you wish to create a new processor
destination_processor_id = ""
Paso 5: Ejecuta el código
import time
from pathlib import Path
from typing import Optional, Tuple
from google.cloud.documentai_v1beta3.services.document_service import pagers
from google.api_core.client_options import ClientOptions
from google.api_core.operation import Operation
from google.cloud import documentai_v1beta3 as documentai
from google.cloud import storage
from tqdm import tqdm
source_project_id = "source-project-id"
source_location = "processor-location"
source_processor_id = "source-processor-id"
source_processor_version_to_import = "source-processor-version-id"
migrate_dataset = False # Either True or False
source_exported_gcs_path = (
"gs://bucket/path/to/export_dataset/"
)
destination_project_id = "< destination-project-id >"
# Give empty string if you wish to create a new processor
destination_processor_id = ""
exported_bucket_name = source_exported_gcs_path.split("/")[2]
exported_bucket_path_prefix = "/".join(source_exported_gcs_path.split("/")[3:])
destination_location = source_location
def sample_get_processor(project_id: str, processor_id: str, location: str)->Tuple[str, str]:
"""
This function returns Processor Display Name and Type of Processor from source project
Args:
project_id (str): Project ID
processor_id (str): Document AI Processor ID
location (str): Processor Location
Returns:
Tuple[str, str]: Returns Processor Display name and type
"""
client = documentai.DocumentProcessorServiceClient()
print(
f"Fetching processor({processor_id}) details from source project ({project_id})"
)
name = f"projects/{project_id}/locations/{location}/processors/{processor_id}"
request = documentai.GetProcessorRequest(
name=name,
)
response = client.get_processor(request=request)
print(f"Processor Name: {response.name}")
print(f"Processor Display Name: {response.display_name}")
print(f"Processor Type: {response.type_}")
return response.display_name, response.type_
def sample_create_processor(project_id: str, location: str, display_name: str, processor_type: str)->documentai.Processor:
"""It will create Processor in Destination project
Args:
project_id (str): Project ID
location (str): Location fo processor
display_name (str): Processor Display Name
processor_type (str): Google Cloud Document AI Processor type
Returns:
documentai.Processor: Returns details abouts newly created processor
"""
client = documentai.DocumentProcessorServiceClient()
request = documentai.CreateProcessorRequest(
parent=f"projects/{project_id}/locations/{location}",
processor={
"type_": processor_type,
"display_name": display_name,
},
)
print(f"Creating Processor in project: {project_id} in location: {location}")
print(f"Display Name: {display_name} & Processor Type: {processor_type}")
res = client.create_processor(request=request)
return res
def initialize_dataset(project_id: str, processor_id: str, location: str)-> Operation:
"""It will configure dataset for target processor in destination project
Args:
project_id (str): Project ID
processor_id (str): DocuemntAI Processor ID
location (str): Processor Location
Returns:
Operation: An object representing a long-running operation
"""
# opts = ClientOptions(api_endpoint=f"{location}-documentai.googleapis.com")
client = documentai.DocumentServiceClient() # client_options=opts
dataset = documentai.types.Dataset(
name=f"projects/{project_id}/locations/{location}/processors/{processor_id}/dataset",
state=3,
unmanaged_dataset_config={},
spanner_indexing_config={},
)
request = documentai.types.UpdateDatasetRequest(dataset=dataset)
print(
f"Configuring Dataset in project: {project_id} for processor: {processor_id}"
)
response = client.update_dataset(request=request)
return response
def get_dataset_schema(project_id: str, processor_id: str, location: str)->documentai.DatasetSchema:
"""It helps to fetch processor schema
Args:
project_id (str): Project ID
processor_id (str): DocumentAI Processor ID
location (str): Processor Location
Returns:
documentai.DatasetSchema: Return deails about Processor Dataset Schema
"""
# Create a client
processor_name = (
f"projects/{project_id}/locations/{location}/processors/{processor_id}"
)
client = documentai.DocumentServiceClient()
request = documentai.GetDatasetSchemaRequest(
name=processor_name + "/dataset/datasetSchema"
)
# Make the request
print(f"Fetching schema from source processor: {processor_id}")
response = client.get_dataset_schema(request=request)
return response
def upload_dataset_schema(schema: documentai.DatasetSchema)->documentai.DatasetSchema:
"""It helps to update the schema in destination processor
Args:
schema (documentai.DatasetSchema): Document AI Processor Schema details & Metadata
Returns:
documentai.DatasetSchema: Returns Dataset Schema object
"""
client = documentai.DocumentServiceClient()
request = documentai.UpdateDatasetSchemaRequest(dataset_schema=schema)
print("Updating Schema in destination processor")
res = client.update_dataset_schema(request=request)
return res
def store_document_as_json(document: str, bucket_name: str, file_name: str)->None:
"""It helps to upload data to Cloud Storage and stores as a blob
Args:
document (str): Processor response in json string format
bucket_name (str): Cloud Storage bucket name
file_name (str): Cloud Storage blob uri
"""
print(f"\tUploading file to Cloud Storage gs://{bucket_name}/{file_name}")
storage_client = storage.Client()
process_result_bucket = storage_client.get_bucket(bucket_name)
document_blob = storage.Blob(
name=str(Path(file_name)), bucket=process_result_bucket
)
document_blob.upload_from_string(document, content_type="application/json")
def list_documents(project_id: str, location: str, processor: str, page_size: Optional[int]=100, page_token: Optional[str]="")->pagers.ListDocumentsPager:
"""This function helps to list the samples present in processor dataset
Args:
project_id (str): Project ID
location (str): Processor Location
processor (str): DocumentAI Processor ID
page_size (Optional[int], optional): The maximum number of documents to return. Defaults to 100.
page_token (Optional[str], optional): A page token, received from a previous ListDocuments call. Defaults to "".
Returns:
pagers.ListDocumentsPager: Returns all details about documents present in Processor Dataset
"""
client = documentai.DocumentServiceClient()
dataset = (
f"projects/{project_id}/locations/{location}/processors/{processor}/dataset"
)
request = documentai.types.ListDocumentsRequest(
dataset=dataset,
page_token=page_token,
page_size=page_size,
return_total_size=True,
)
print(f"Listingll documents/Samples present in processor: {processor}")
operation = client.list_documents(request)
return operation
def get_document(project_id: str, location: str, processor: str, doc_id: documentai.DocumentId)->documentai.GetDocumentResponse:
"""It will fetch data for individual sample/document present in dataset
Args:
project_id (str): Project ID
location (str): Processor Location
processor (str): Document AI Processor ID
doc_id (documentai.DocumentId): Document identifier
Returns:
documentai.GetDocumentResponse: Returns data related to doc_id
"""
client = documentai.DocumentServiceClient()
dataset = (
f"projects/{project_id}/locations/{location}/processors/{processor}/dataset"
)
request = documentai.GetDocumentRequest(dataset=dataset, document_id=doc_id)
operation = client.get_document(request)
return operation
def import_documents(project_id: str, processor_id: str, location: str, gcs_path: str)->Operation:
"""It helps to import samples/docuemnts from Cloud Storage path to processor via API call
Args:
project_id (str): Project ID
processor_id (str): Document AI Processor ID
location (str): Processor Location
gcs_path (str): Cloud Storage path uri prefix
Returns:
Operation: An object representing a long-running operation
"""
client = documentai.DocumentServiceClient()
dataset = (
f"projects/{project_id}/locations/{location}/processors/{processor_id}/dataset"
)
request = documentai.ImportDocumentsRequest(
dataset=dataset,
batch_documents_import_configs=[
{
"dataset_split": "DATASET_SPLIT_TRAIN",
"batch_input_config": {
"gcs_prefix": {"gcs_uri_prefix": gcs_path + "train/"}
},
},
{
"dataset_split": "DATASET_SPLIT_TEST",
"batch_input_config": {
"gcs_prefix": {"gcs_uri_prefix": gcs_path + "test/"}
},
},
{
"dataset_split": "DATASET_SPLIT_UNASSIGNED",
"batch_input_config": {
"gcs_prefix": {"gcs_uri_prefix": gcs_path + "unassigned/"}
},
},
],
)
print(
f"Importing Documents/samples from {gcs_path} to corresponding tran_test_unassigned sections"
)
response = client.import_documents(request=request)
return response
def import_processor_version(source_processor_version_name: str, destination_processor_name: str)->Operation:
"""It helps to import processor version from source processor to destanation processor
Args:
source_processor_version_name (str): source processor name in this format projects/{project}/locations/{location}/processors/{processor}
destination_processor_name (str): destination processor name in this format projects/{project}/locations/{location}/processors/{processor}
Returns:
Operation: An object representing a long-running operation
"""
from google.cloud import documentai_v1beta3
# provide the source version(to copy) processor details in the following format
client = documentai_v1beta3.DocumentProcessorServiceClient()
# provide the new processor name in the parent variable in format 'projects/{project_number}/locations/{location}/processors/{new_processor_id}'
import google.cloud.documentai_v1beta3 as documentai
op_import_version_req = (
documentai.types.document_processor_service.ImportProcessorVersionRequest(
processor_version_source=source_processor_version_name,
parent=destination_processor_name,
)
)
print("Importing processor from source to destination")
print(f"\tSource: {source_processor_version_name}")
print(f"\tDestination: {destination_processor_name}")
# copying the processor
operation = client.import_processor_version(request=op_import_version_req)
print(operation.metadata)
print("Waitin for operation to complete...")
operation.result()
return operation
def deploy_and_set_default_processor_version(
project_id: str, location: str, processor_id: str, processor_version_id: str
)->None:
"""It helps to deploy to imported processor version and set it as default version
Args:
project_id (str): Project ID
location (str): Processor Location
processor_id (str): Document AI Processor ID
processor_version_id (str): Document AI Processor Version ID
"""
# Construct the resource name of the processor version
processor_name = (
f"projects/{project_id}/locations/{location}/processors/{processor_id}"
)
default_processor_version_name = f"projects/{project_id}/locations/{location}/processors/{processor_id}/processorVersions/{processor_version_id}"
# Initialize the Document AI client
client_options = ClientOptions(api_endpoint=f"{location}-documentai.googleapis.com")
client = documentai.DocumentProcessorServiceClient(client_options=client_options)
# Deploy the processor version
operation = client.deploy_processor_version(name=default_processor_version_name)
print(f"Deploying processor version: {operation.operation.name}")
print("Waiting for operation to complete...")
result = operation.result()
print("Processor version deployed")
# Set the deployed version as the default version
request = documentai.SetDefaultProcessorVersionRequest(
processor=processor_name,
default_processor_version=default_processor_version_name,
)
operation = client.set_default_processor_version(request=request)
print(f"Setting default processor version: {operation.operation.name}")
operation.result()
print(f"Default processor version set {default_processor_version_name}")
def main(destination_processor_id: str, migrate_dataset: bool = False)->None:
"""Entry function to perform Processor Migration from Source Project to Destination project
Args:
destination_processor_id (str): Either empty string or processor id in desination project
"""
# Checking processor id of destination project
if destination_processor_id == "":
# Fetching Processor Display Name and Type of Processor from source project
display_name, processor_type = sample_get_processor(
source_project_id, source_processor_id, source_location
)
# Creating Processor in Destination project
des_processor = sample_create_processor(
destination_project_id, destination_location, display_name, processor_type
)
print(des_processor)
destination_processor_id = des_processor.name.split("/")[-1]
# configuring dataset for target processor in destination project
r = initialize_dataset(
destination_project_id, destination_processor_id, destination_location
)
# fetching processor schema from source processor
exported_schema = get_dataset_schema(
source_project_id, source_processor_id, source_location
)
exported_schema.name = f"projects/{destination_project_id}/locations/{destination_location}/processors/{destination_processor_id}/dataset/datasetSchema"
# Copying schema from source processor to desination processor
import_schema = upload_dataset_schema(exported_schema)
if migrate_dataset == True: # to migrate dataset from source to destination processor
print("Migrating Dataset from source to destination processor")
# Fetching/listing the samples/JSONs present in source processor dataset
results = list_documents(source_project_id, source_location, source_processor_id)
document_list = results.document_metadata
while len(document_list) != results.total_size:
page_token = results.next_page_token
results = list_documents(
source_project_id,
source_location,
source_processor_id,
page_token=page_token,
)
document_list.extend(results.document_metadata)
print("Exporting Dataset...")
for doc in tqdm(document_list):
doc_id = doc.document_id
split_type = doc.dataset_type
if split_type == 3:
split = "unassigned"
elif split_type == 2:
split = "test"
elif split_type == 1:
split = "train"
else:
split = "unknown"
file_name = doc.display_name
# fetching/downloading data for individual sample/document present in dataset
res = get_document(
source_project_id, source_location, source_processor_id, doc_id
)
output_file_name = (
f"{exported_bucket_path_prefix.strip('/')}/{split}/{file_name}.json"
)
# Converting Document AI Proto object to JSON string
json_data = documentai.Document.to_json(res.document)
# Uploading JSON data to specified Cloud Storage path
store_document_as_json(json_data, exported_bucket_name, output_file_name)
print(f"Importing dataset to {destination_processor_id}")
gcs_path = source_exported_gcs_path.strip("/") + "/"
project = destination_project_id
location = destination_location
processor = destination_processor_id
# importing samples/docuemnts from Cloud Storage path to destination processor
res = import_documents(project, processor, location, gcs_path)
print(f"Waiting for {len(document_list)*1.5} seconds")
time.sleep(len(document_list) * 1.5)
else:
print("\tSkipping Dataset Migration actions like, exporting source dataset to Cloud Storage and importing dataset to destination processor")
# Checking for source processor vesion, if id provided then it will be imported to destination processor
if source_processor_version_to_import != "":
print(f"Importing Processor Version {source_processor_version_to_import}")
source_version = f"projects/{source_project_id}/locations/{source_location}/processors/{source_processor_id}/processorVersions/{source_processor_version_to_import}"
destination_version = f"projects/{destination_project_id}/locations/{destination_location}/processors/{destination_processor_id}"
# source_version = f"projects/{source_project_id}/locations/us/processors/a82fc086440d7ea1/processorVersions/f1eeed93aad5e317" # Data for testing
# Importing processor version from source processor to destanation processor
operation = import_processor_version(source_version, destination_version)
name = operation.metadata.common_metadata.resource
destination_processor_version_id = name.split("/")[-1]
# deploying newly imported processor version and set it as default version in desination project
deploy_and_set_default_processor_version(
destination_project_id,
destination_location,
destination_processor_id,
destination_processor_version_id,
)
main(destination_processor_id, migrate_dataset)
print("Process Completed!!!")
Paso 6: Revisa los detalles del resultado
Ve al proyecto de destino y verifica la creación del procesador, la disponibilidad del conjunto de datos y la versión nueva del procesador como la versión predeterminada.