l-Diversität für ein Dataset berechnen

L-Diversität ist ein Attribut eines Datasets und eine Erweiterung von k-Anonymität, das/die die Vielfalt vertraulicher Werte für jede Spalte misst, in der sie auftreten. Ein Dataset hat l-Diversität, wenn in allen Zeilengruppen mit identischen Quasi-Identifikatoren mindestens l verschiedene Werte für jedes Sensibilitätsattribut vorhanden sind.

Sie können den l-Diversitätswert basierend auf einzelnen oder mehreren Spalten oder Feldern eines Datasets berechnen. In diesem Thema wird gezeigt, wie Sie mit dem Schutz sensibler Daten die l-Diversitätswerte für ein Dataset berechnen. Bevor Sie fortfahren, lesen Sie weitere Informationen zur l-Diversität oder zur Risikoanalyse im Allgemeinen im Thema zum Konzept der Risikoanalyse.

Hinweise

Bevor Sie fortfahren, führen Sie Folgendes aus:

  1. Melden Sie sich bei Ihrem Google-Konto an.
  2. Wählen Sie in der Google Cloud Console auf der Seite für die Projektauswahl ein Google Cloud-Projekt aus oder erstellen Sie eines.
  3. Projektauswahl aufrufen
  4. Die Abrechnung für das Google Cloud-Projekt muss aktiviert sein. Weitere Informationen zur Abrechnung Ihres Projekts.
  5. Aktivieren Sie den Schutz sensibler Daten.
  6. Schutz sensibler Daten aktivieren

  7. Wählen Sie das zu analysierende BigQuery-Dataset aus. Der Schutz sensibler Daten berechnet den l-Diversitätsmesswert durch Scannen einer BigQuery-Tabelle.
  8. Bestimmen Sie eine ID für vertrauliche Felder (falls zutreffend) und mindestens eine Quasi-Identifikator im Dataset. Weitere Informationen finden Sie unter Begriffe und Techniken der Risikoanalyse.

l-Diversität berechnen

Der Schutz sensibler Daten führt bei jeder Ausführung eines Risikoanalysejobs eine Risikoanalyse durch. Sie müssen den Job zuerst erstellen. Verwenden Sie dazu entweder die Google Cloud Console, eine DLP API-Anfrage oder eine Clientbibliothek für den Schutz sensibler Daten.

Console

  1. Rufen Sie in der Google Cloud Console die Seite Risikoanalyse erstellen auf.

    Zur Seite „Risikoanalyse erstellen“

  2. Legen Sie im Bereich Eingabedaten auswählen die zu scannende BigQuery-Tabelle fest. Geben Sie dazu die Projekt-ID des Projekts, das die Tabelle enthält, die Dataset-ID der Tabelle und den Namen der Tabelle ein.

  3. Wählen Sie unter Datenschutzmesswert zur Berechnung () l-Diversität aus.

  4. Im Bereich Job-ID können Sie dem Job optional eine benutzerdefinierte Kennung zuweisen und einen Ressourcenstandort auswählen, an dem der Schutz sensibler Daten Ihre Daten verarbeitet. Wenn Sie fertig sind, klicken Sie auf Weiter.

  5. Im Abschnitt Felder definieren geben Sie sensible Felder und Quasi-Identifikatoren für den l-Diversitäts-Risikojob an. Der Schutz sensibler Daten greift auf die Metadaten der BigQuery-Tabelle zu, die Sie im vorherigen Schritt angegeben haben, und versucht, die Liste der Felder mit Daten zu füllen.

    1. Klicken Sie auf das entsprechende Kästchen, um ein Feld als ein vertrauliches Feld (S) oder eine Quasi-Identifikator (QI) anzugeben. Sie müssen ein Feld mit vertraulichen Daten und mindestens eine Quasi-Identifikator auswählen.
    2. Wenn die Felder für den Schutz sensibler Daten nicht ausgefüllt werden können, klicken Sie auf Feldnamen eingeben, um eines oder mehrere Felder manuell einzugeben und jedes als Feld für sensible Daten oder Quasi-ID festzulegen. Wenn Sie fertig sind, klicken Sie auf Weiter.
  6. Im Abschnitt Aktionen hinzufügen () können Sie optionale Aktionen hinzufügen, die ausgeführt werden, wenn der Risikojob abgeschlossen ist. Folgende Optionen sind verfügbar:

    • In BigQuery speichern (): Die Ergebnisse des Risikoanalysescans werden in einer BigQuery-Tabelle gespeichert.
    • In Pub/Sub veröffentlichen: Veröffentlicht eine Benachrichtigung in einem Cloud Pub/Sub-Thema.

    • Per E-Mail benachrichtigen: Sendet Ihnen eine E-Mail mit Ergebnissen. Wenn Sie fertig sind, klicken Sie auf Erstellen.

Der l-Diversitäts-Risikoanalyse-Job beginnt sofort.

C#

Informationen zum Installieren und Verwenden der Clientbibliothek für den Schutz sensibler Daten finden Sie unter Clientbibliotheken für den Schutz sensibler Daten.

Richten Sie Standardanmeldedaten für Anwendungen ein, um sich beim Schutz sensibler Daten zu authentifizieren. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.


using Google.Api.Gax.ResourceNames;
using Google.Cloud.Dlp.V2;
using Google.Cloud.PubSub.V1;
using Newtonsoft.Json;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Threading;
using System.Threading.Tasks;
using static Google.Cloud.Dlp.V2.Action.Types;
using static Google.Cloud.Dlp.V2.PrivacyMetric.Types;

public class RiskAnalysisCreateLDiversity
{
    public static object LDiversity(
        string callingProjectId,
        string tableProjectId,
        string datasetId,
        string tableId,
        string topicId,
        string subscriptionId,
        IEnumerable<FieldId> quasiIds,
        string sensitiveAttribute)
    {
        var dlp = DlpServiceClient.Create();

        // Construct + submit the job
        var ldiversityConfig = new LDiversityConfig
        {
            SensitiveAttribute = new FieldId { Name = sensitiveAttribute },
            QuasiIds = { quasiIds }
        };

        var config = new RiskAnalysisJobConfig
        {
            PrivacyMetric = new PrivacyMetric
            {
                LDiversityConfig = ldiversityConfig
            },
            SourceTable = new BigQueryTable
            {
                ProjectId = tableProjectId,
                DatasetId = datasetId,
                TableId = tableId
            },
            Actions =
            {
                new Google.Cloud.Dlp.V2.Action
                {
                    PubSub = new PublishToPubSub
                    {
                        Topic = $"projects/{callingProjectId}/topics/{topicId}"
                    }
                }
            }
        };

        var submittedJob = dlp.CreateDlpJob(
            new CreateDlpJobRequest
            {
                ParentAsProjectName = new ProjectName(callingProjectId),
                RiskJob = config
            });

        // Listen to pub/sub for the job
        var subscriptionName = new SubscriptionName(callingProjectId, subscriptionId);
        var subscriber = SubscriberClient.CreateAsync(subscriptionName).Result;

        // SimpleSubscriber runs your message handle function on multiple
        // threads to maximize throughput.
        var done = new ManualResetEventSlim(false);
        subscriber.StartAsync((PubsubMessage message, CancellationToken cancel) =>
        {
            if (message.Attributes["DlpJobName"] == submittedJob.Name)
            {
                Thread.Sleep(500); // Wait for DLP API results to become consistent
                done.Set();
                return Task.FromResult(SubscriberClient.Reply.Ack);
            }
            else
            {
                return Task.FromResult(SubscriberClient.Reply.Nack);
            }
        });

        done.Wait(TimeSpan.FromMinutes(10)); // 10 minute timeout; may not work for large jobs
        subscriber.StopAsync(CancellationToken.None).Wait();

        // Process results
        var resultJob = dlp.GetDlpJob(
            new GetDlpJobRequest
            {
                DlpJobName = DlpJobName.Parse(submittedJob.Name)
            });

        var result = resultJob.RiskDetails.LDiversityResult;

        for (var bucketIdx = 0; bucketIdx < result.SensitiveValueFrequencyHistogramBuckets.Count; bucketIdx++)
        {
            var bucket = result.SensitiveValueFrequencyHistogramBuckets[bucketIdx];
            Console.WriteLine($"Bucket {bucketIdx}");
            Console.WriteLine($"  Bucket size range: [{bucket.SensitiveValueFrequencyLowerBound}, {bucket.SensitiveValueFrequencyUpperBound}].");
            Console.WriteLine($"  {bucket.BucketSize} unique value(s) total.");

            foreach (var bucketValue in bucket.BucketValues)
            {
                // 'UnpackValue(x)' is a prettier version of 'x.toString()'
                Console.WriteLine($"    Quasi-ID values: [{String.Join(',', bucketValue.QuasiIdsValues.Select(x => UnpackValue(x)))}]");
                Console.WriteLine($"    Class size: {bucketValue.EquivalenceClassSize}");

                foreach (var topValue in bucketValue.TopSensitiveValues)
                {
                    Console.WriteLine($"    Sensitive value {UnpackValue(topValue.Value)} occurs {topValue.Count} time(s).");
                }
            }
        }

        return result;
    }

    public static string UnpackValue(Value protoValue)
    {
        var jsonValue = JsonConvert.DeserializeObject<Dictionary<string, object>>(protoValue.ToString());
        return jsonValue.Values.ElementAt(0).ToString();
    }
}

Go

Informationen zum Installieren und Verwenden der Clientbibliothek für den Schutz sensibler Daten finden Sie unter Clientbibliotheken für den Schutz sensibler Daten.

Richten Sie Standardanmeldedaten für Anwendungen ein, um sich beim Schutz sensibler Daten zu authentifizieren. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.

import (
	"context"
	"fmt"
	"io"
	"strings"
	"time"

	dlp "cloud.google.com/go/dlp/apiv2"
	"cloud.google.com/go/dlp/apiv2/dlppb"
	"cloud.google.com/go/pubsub"
)

// riskLDiversity computes the L Diversity of the given columns.
func riskLDiversity(w io.Writer, projectID, dataProject, pubSubTopic, pubSubSub, datasetID, tableID, sensitiveAttribute string, columnNames ...string) error {
	// projectID := "my-project-id"
	// dataProject := "bigquery-public-data"
	// pubSubTopic := "dlp-risk-sample-topic"
	// pubSubSub := "dlp-risk-sample-sub"
	// datasetID := "nhtsa_traffic_fatalities"
	// tableID := "accident_2015"
	// sensitiveAttribute := "city"
	// columnNames := "state_number", "county"
	ctx := context.Background()
	client, err := dlp.NewClient(ctx)
	if err != nil {
		return fmt.Errorf("dlp.NewClient: %w", err)
	}
	defer client.Close()

	// Create a PubSub Client used to listen for when the inspect job finishes.
	pubsubClient, err := pubsub.NewClient(ctx, projectID)
	if err != nil {
		return err
	}
	defer pubsubClient.Close()

	// Create a PubSub subscription we can use to listen for messages.
	// Create the Topic if it doesn't exist.
	t := pubsubClient.Topic(pubSubTopic)
	topicExists, err := t.Exists(ctx)
	if err != nil {
		return err
	}
	if !topicExists {
		if t, err = pubsubClient.CreateTopic(ctx, pubSubTopic); err != nil {
			return err
		}
	}

	// Create the Subscription if it doesn't exist.
	s := pubsubClient.Subscription(pubSubSub)
	subExists, err := s.Exists(ctx)
	if err != nil {
		return err
	}
	if !subExists {
		if s, err = pubsubClient.CreateSubscription(ctx, pubSubSub, pubsub.SubscriptionConfig{Topic: t}); err != nil {
			return err
		}
	}

	// topic is the PubSub topic string where messages should be sent.
	topic := "projects/" + projectID + "/topics/" + pubSubTopic

	// Build the QuasiID slice.
	var q []*dlppb.FieldId
	for _, c := range columnNames {
		q = append(q, &dlppb.FieldId{Name: c})
	}

	// Create a configured request.
	req := &dlppb.CreateDlpJobRequest{
		Parent: fmt.Sprintf("projects/%s/locations/global", projectID),
		Job: &dlppb.CreateDlpJobRequest_RiskJob{
			RiskJob: &dlppb.RiskAnalysisJobConfig{
				// PrivacyMetric configures what to compute.
				PrivacyMetric: &dlppb.PrivacyMetric{
					Type: &dlppb.PrivacyMetric_LDiversityConfig_{
						LDiversityConfig: &dlppb.PrivacyMetric_LDiversityConfig{
							QuasiIds: q,
							SensitiveAttribute: &dlppb.FieldId{
								Name: sensitiveAttribute,
							},
						},
					},
				},
				// SourceTable describes where to find the data.
				SourceTable: &dlppb.BigQueryTable{
					ProjectId: dataProject,
					DatasetId: datasetID,
					TableId:   tableID,
				},
				// Send a message to PubSub using Actions.
				Actions: []*dlppb.Action{
					{
						Action: &dlppb.Action_PubSub{
							PubSub: &dlppb.Action_PublishToPubSub{
								Topic: topic,
							},
						},
					},
				},
			},
		},
	}
	// Create the risk job.
	j, err := client.CreateDlpJob(ctx, req)
	if err != nil {
		return fmt.Errorf("CreateDlpJob: %w", err)
	}
	fmt.Fprintf(w, "Created job: %v\n", j.GetName())
	// Wait for the risk job to finish by waiting for a PubSub message.
	// This only waits for 10 minutes. For long jobs, consider using a truly
	// asynchronous execution model such as Cloud Functions.
	ctx, cancel := context.WithTimeout(ctx, 10*time.Minute)
	defer cancel()
	err = s.Receive(ctx, func(ctx context.Context, msg *pubsub.Message) {
		// If this is the wrong job, do not process the result.
		if msg.Attributes["DlpJobName"] != j.GetName() {
			msg.Nack()
			return
		}
		msg.Ack()
		time.Sleep(500 * time.Millisecond)
		j, err := client.GetDlpJob(ctx, &dlppb.GetDlpJobRequest{
			Name: j.GetName(),
		})
		if err != nil {
			fmt.Fprintf(w, "GetDlpJob: %v", err)
			return
		}
		h := j.GetRiskDetails().GetLDiversityResult().GetSensitiveValueFrequencyHistogramBuckets()
		for i, b := range h {
			fmt.Fprintf(w, "Histogram bucket %v\n", i)
			fmt.Fprintf(w, "  Size range: [%v,%v]\n", b.GetSensitiveValueFrequencyLowerBound(), b.GetSensitiveValueFrequencyUpperBound())
			fmt.Fprintf(w, "  %v unique values total\n", b.GetBucketSize())
			for _, v := range b.GetBucketValues() {
				var qvs []string
				for _, qv := range v.GetQuasiIdsValues() {
					qvs = append(qvs, qv.String())
				}
				fmt.Fprintf(w, "    QuasiID values: %s\n", strings.Join(qvs, ", "))
				fmt.Fprintf(w, "    Class size: %v\n", v.GetEquivalenceClassSize())
				for _, sv := range v.GetTopSensitiveValues() {
					fmt.Fprintf(w, "    Sensitive value %v occurs %v times\n", sv.GetValue(), sv.GetCount())
				}
			}
		}
		// Stop listening for more messages.
		cancel()
	})
	if err != nil {
		return fmt.Errorf("Recieve: %w", err)
	}
	return nil
}

Java

Informationen zum Installieren und Verwenden der Clientbibliothek für den Schutz sensibler Daten finden Sie unter Clientbibliotheken für den Schutz sensibler Daten.

Richten Sie Standardanmeldedaten für Anwendungen ein, um sich beim Schutz sensibler Daten zu authentifizieren. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.


import com.google.api.core.SettableApiFuture;
import com.google.cloud.dlp.v2.DlpServiceClient;
import com.google.cloud.dlp.v2.DlpServiceSettings;
import com.google.cloud.pubsub.v1.AckReplyConsumer;
import com.google.cloud.pubsub.v1.MessageReceiver;
import com.google.cloud.pubsub.v1.Subscriber;
import com.google.privacy.dlp.v2.Action;
import com.google.privacy.dlp.v2.Action.PublishToPubSub;
import com.google.privacy.dlp.v2.AnalyzeDataSourceRiskDetails.LDiversityResult;
import com.google.privacy.dlp.v2.AnalyzeDataSourceRiskDetails.LDiversityResult.LDiversityEquivalenceClass;
import com.google.privacy.dlp.v2.AnalyzeDataSourceRiskDetails.LDiversityResult.LDiversityHistogramBucket;
import com.google.privacy.dlp.v2.BigQueryTable;
import com.google.privacy.dlp.v2.CreateDlpJobRequest;
import com.google.privacy.dlp.v2.DlpJob;
import com.google.privacy.dlp.v2.FieldId;
import com.google.privacy.dlp.v2.GetDlpJobRequest;
import com.google.privacy.dlp.v2.LocationName;
import com.google.privacy.dlp.v2.PrivacyMetric;
import com.google.privacy.dlp.v2.PrivacyMetric.LDiversityConfig;
import com.google.privacy.dlp.v2.RiskAnalysisJobConfig;
import com.google.privacy.dlp.v2.Value;
import com.google.privacy.dlp.v2.ValueFrequency;
import com.google.pubsub.v1.ProjectSubscriptionName;
import com.google.pubsub.v1.ProjectTopicName;
import com.google.pubsub.v1.PubsubMessage;
import java.io.IOException;
import java.util.Arrays;
import java.util.List;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;
import java.util.stream.Collectors;
import org.threeten.bp.Duration;

@SuppressWarnings("checkstyle:AbbreviationAsWordInName")
class RiskAnalysisLDiversity {

  public static void main(String[] args) throws Exception {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "your-project-id";
    String datasetId = "your-bigquery-dataset-id";
    String tableId = "your-bigquery-table-id";
    String topicId = "pub-sub-topic";
    String subscriptionId = "pub-sub-subscription";
    calculateLDiversity(projectId, datasetId, tableId, topicId, subscriptionId);
  }

  public static void calculateLDiversity(
      String projectId, String datasetId, String tableId, String topicId, String subscriptionId)
      throws ExecutionException, InterruptedException, IOException {

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    DlpServiceSettings.Builder dlpServiceSettingsBuilder = DlpServiceSettings.newBuilder();
    dlpServiceSettingsBuilder
        .getDlpJobSettings()
        .setRetrySettings(
            dlpServiceSettingsBuilder
                .getDlpJobSettings()
                .getRetrySettings()
                .toBuilder()
                .setTotalTimeout(Duration.ofSeconds(600))
                .build());
    try (DlpServiceClient dlpServiceClient =
        DlpServiceClient.create(dlpServiceSettingsBuilder.build())) {
      // Specify the BigQuery table to analyze
      BigQueryTable bigQueryTable =
          BigQueryTable.newBuilder()
              .setProjectId(projectId)
              .setDatasetId(datasetId)
              .setTableId(tableId)
              .build();

      // These values represent the column names of quasi-identifiers to analyze
      List<String> quasiIds = Arrays.asList("Age", "Mystery");

      // This value represents the column name to compare the quasi-identifiers against
      String sensitiveAttribute = "Name";

      // Configure the privacy metric for the job
      FieldId sensitiveAttributeField = FieldId.newBuilder().setName(sensitiveAttribute).build();
      List<FieldId> quasiIdFields =
          quasiIds.stream()
              .map(columnName -> FieldId.newBuilder().setName(columnName).build())
              .collect(Collectors.toList());
      LDiversityConfig ldiversityConfig =
          LDiversityConfig.newBuilder()
              .addAllQuasiIds(quasiIdFields)
              .setSensitiveAttribute(sensitiveAttributeField)
              .build();
      PrivacyMetric privacyMetric =
          PrivacyMetric.newBuilder().setLDiversityConfig(ldiversityConfig).build();

      // Create action to publish job status notifications over Google Cloud Pub/
      ProjectTopicName topicName = ProjectTopicName.of(projectId, topicId);
      PublishToPubSub publishToPubSub =
          PublishToPubSub.newBuilder().setTopic(topicName.toString()).build();
      Action action = Action.newBuilder().setPubSub(publishToPubSub).build();

      // Configure the risk analysis job to perform
      RiskAnalysisJobConfig riskAnalysisJobConfig =
          RiskAnalysisJobConfig.newBuilder()
              .setSourceTable(bigQueryTable)
              .setPrivacyMetric(privacyMetric)
              .addActions(action)
              .build();

      // Build the request to be sent by the client
      CreateDlpJobRequest createDlpJobRequest =
          CreateDlpJobRequest.newBuilder()
              .setParent(LocationName.of(projectId, "global").toString())
              .setRiskJob(riskAnalysisJobConfig)
              .build();

      // Send the request to the API using the client
      DlpJob dlpJob = dlpServiceClient.createDlpJob(createDlpJobRequest);

      // Set up a Pub/Sub subscriber to listen on the job completion status
      final SettableApiFuture<Boolean> done = SettableApiFuture.create();

      ProjectSubscriptionName subscriptionName =
          ProjectSubscriptionName.of(projectId, subscriptionId);

      MessageReceiver messageHandler =
          (PubsubMessage pubsubMessage, AckReplyConsumer ackReplyConsumer) -> {
            handleMessage(dlpJob, done, pubsubMessage, ackReplyConsumer);
          };
      Subscriber subscriber = Subscriber.newBuilder(subscriptionName, messageHandler).build();
      subscriber.startAsync();

      // Wait for job completion semi-synchronously
      // For long jobs, consider using a truly asynchronous execution model such as Cloud Functions
      try {
        done.get(15, TimeUnit.MINUTES);
      } catch (TimeoutException e) {
        System.out.println("Job was not completed after 15 minutes.");
        return;
      } finally {
        subscriber.stopAsync();
        subscriber.awaitTerminated();
      }

      // Build a request to get the completed job
      GetDlpJobRequest getDlpJobRequest =
          GetDlpJobRequest.newBuilder().setName(dlpJob.getName()).build();

      // Retrieve completed job status
      DlpJob completedJob = dlpServiceClient.getDlpJob(getDlpJobRequest);
      System.out.println("Job status: " + completedJob.getState());
      System.out.println("Job name: " + dlpJob.getName());

      // Get the result and parse through and process the information
      LDiversityResult ldiversityResult = completedJob.getRiskDetails().getLDiversityResult();
      List<LDiversityHistogramBucket> histogramBucketList =
          ldiversityResult.getSensitiveValueFrequencyHistogramBucketsList();
      for (LDiversityHistogramBucket result : histogramBucketList) {
        for (LDiversityEquivalenceClass bucket : result.getBucketValuesList()) {
          List<String> quasiIdValues =
              bucket.getQuasiIdsValuesList().stream()
                  .map(Value::toString)
                  .collect(Collectors.toList());

          System.out.println("\tQuasi-ID values: " + String.join(", ", quasiIdValues));
          System.out.println("\tClass size: " + bucket.getEquivalenceClassSize());

          for (ValueFrequency valueFrequency : bucket.getTopSensitiveValuesList()) {
            System.out.printf(
                "\t\tSensitive value %s occurs %d time(s).\n",
                valueFrequency.getValue().toString(), valueFrequency.getCount());
          }
        }
      }
    }
  }

  // handleMessage injects the job and settableFuture into the message reciever interface
  private static void handleMessage(
      DlpJob job,
      SettableApiFuture<Boolean> done,
      PubsubMessage pubsubMessage,
      AckReplyConsumer ackReplyConsumer) {
    String messageAttribute = pubsubMessage.getAttributesMap().get("DlpJobName");
    if (job.getName().equals(messageAttribute)) {
      done.set(true);
      ackReplyConsumer.ack();
    } else {
      ackReplyConsumer.nack();
    }
  }
}

Node.js

Informationen zum Installieren und Verwenden der Clientbibliothek für den Schutz sensibler Daten finden Sie unter Clientbibliotheken für den Schutz sensibler Daten.

Richten Sie Standardanmeldedaten für Anwendungen ein, um sich beim Schutz sensibler Daten zu authentifizieren. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.

// Import the Google Cloud client libraries
const DLP = require('@google-cloud/dlp');
const {PubSub} = require('@google-cloud/pubsub');

// Instantiates clients
const dlp = new DLP.DlpServiceClient();
const pubsub = new PubSub();

// The project ID to run the API call under
// const projectId = 'my-project';

// The project ID the table is stored under
// This may or (for public datasets) may not equal the calling project ID
// const tableProjectId = 'my-project';

// The ID of the dataset to inspect, e.g. 'my_dataset'
// const datasetId = 'my_dataset';

// The ID of the table to inspect, e.g. 'my_table'
// const tableId = 'my_table';

// The name of the Pub/Sub topic to notify once the job completes
// TODO(developer): create a Pub/Sub topic to use for this
// const topicId = 'MY-PUBSUB-TOPIC'

// The name of the Pub/Sub subscription to use when listening for job
// completion notifications
// TODO(developer): create a Pub/Sub subscription to use for this
// const subscriptionId = 'MY-PUBSUB-SUBSCRIPTION'

// The column to measure l-diversity relative to, e.g. 'firstName'
// const sensitiveAttribute = 'name';

// A set of columns that form a composite key ('quasi-identifiers')
// const quasiIds = [{ name: 'age' }, { name: 'city' }];

async function lDiversityAnalysis() {
  const sourceTable = {
    projectId: tableProjectId,
    datasetId: datasetId,
    tableId: tableId,
  };

  // Construct request for creating a risk analysis job
  const request = {
    parent: `projects/${projectId}/locations/global`,
    riskJob: {
      privacyMetric: {
        lDiversityConfig: {
          quasiIds: quasiIds,
          sensitiveAttribute: {
            name: sensitiveAttribute,
          },
        },
      },
      sourceTable: sourceTable,
      actions: [
        {
          pubSub: {
            topic: `projects/${projectId}/topics/${topicId}`,
          },
        },
      ],
    },
  };

  // Create helper function for unpacking values
  const getValue = obj => obj[Object.keys(obj)[0]];

  // Run risk analysis job
  const [topicResponse] = await pubsub.topic(topicId).get();
  const subscription = await topicResponse.subscription(subscriptionId);
  const [jobsResponse] = await dlp.createDlpJob(request);
  const jobName = jobsResponse.name;
  console.log(`Job created. Job name: ${jobName}`);
  // Watch the Pub/Sub topic until the DLP job finishes
  await new Promise((resolve, reject) => {
    const messageHandler = message => {
      if (message.attributes && message.attributes.DlpJobName === jobName) {
        message.ack();
        subscription.removeListener('message', messageHandler);
        subscription.removeListener('error', errorHandler);
        resolve(jobName);
      } else {
        message.nack();
      }
    };

    const errorHandler = err => {
      subscription.removeListener('message', messageHandler);
      subscription.removeListener('error', errorHandler);
      reject(err);
    };

    subscription.on('message', messageHandler);
    subscription.on('error', errorHandler);
  });
  setTimeout(() => {
    console.log(' Waiting for DLP job to fully complete');
  }, 500);
  const [job] = await dlp.getDlpJob({name: jobName});
  const histogramBuckets =
    job.riskDetails.lDiversityResult.sensitiveValueFrequencyHistogramBuckets;

  histogramBuckets.forEach((histogramBucket, histogramBucketIdx) => {
    console.log(`Bucket ${histogramBucketIdx}:`);

    console.log(
      `Bucket size range: [${histogramBucket.sensitiveValueFrequencyLowerBound}, ${histogramBucket.sensitiveValueFrequencyUpperBound}]`
    );
    histogramBucket.bucketValues.forEach(valueBucket => {
      const quasiIdValues = valueBucket.quasiIdsValues
        .map(getValue)
        .join(', ');
      console.log(`  Quasi-ID values: {${quasiIdValues}}`);
      console.log(`  Class size: ${valueBucket.equivalenceClassSize}`);
      valueBucket.topSensitiveValues.forEach(valueObj => {
        console.log(
          `    Sensitive value ${getValue(valueObj.value)} occurs ${
            valueObj.count
          } time(s).`
        );
      });
    });
  });
}

await lDiversityAnalysis();

PHP

Informationen zum Installieren und Verwenden der Clientbibliothek für den Schutz sensibler Daten finden Sie unter Clientbibliotheken für den Schutz sensibler Daten.

Richten Sie Standardanmeldedaten für Anwendungen ein, um sich beim Schutz sensibler Daten zu authentifizieren. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.

use Google\Cloud\Dlp\V2\Action;
use Google\Cloud\Dlp\V2\Action\PublishToPubSub;
use Google\Cloud\Dlp\V2\BigQueryTable;
use Google\Cloud\Dlp\V2\Client\DlpServiceClient;
use Google\Cloud\Dlp\V2\CreateDlpJobRequest;
use Google\Cloud\Dlp\V2\DlpJob\JobState;
use Google\Cloud\Dlp\V2\FieldId;
use Google\Cloud\Dlp\V2\GetDlpJobRequest;
use Google\Cloud\Dlp\V2\PrivacyMetric;
use Google\Cloud\Dlp\V2\PrivacyMetric\LDiversityConfig;
use Google\Cloud\Dlp\V2\RiskAnalysisJobConfig;
use Google\Cloud\PubSub\PubSubClient;

/**
 * Computes the l-diversity of a column set in a Google BigQuery table.
 *
 * @param string    $callingProjectId    The project ID to run the API call under
 * @param string    $dataProjectId       The project ID containing the target Datastore
 * @param string    $topicId             The name of the Pub/Sub topic to notify once the job completes
 * @param string    $subscriptionId      The name of the Pub/Sub subscription to use when listening for job
 * @param string    $datasetId           The ID of the dataset to inspect
 * @param string    $tableId             The ID of the table to inspect
 * @param string    $sensitiveAttribute  The column to measure l-diversity relative to, e.g. "firstName"
 * @param string[]  $quasiIdNames        Array columns that form a composite key (quasi-identifiers)
 */
function l_diversity(
    string $callingProjectId,
    string $dataProjectId,
    string $topicId,
    string $subscriptionId,
    string $datasetId,
    string $tableId,
    string $sensitiveAttribute,
    array $quasiIdNames
): void {
    // Instantiate a client.
    $dlp = new DlpServiceClient();
    $pubsub = new PubSubClient();
    $topic = $pubsub->topic($topicId);

    // Construct risk analysis config
    $quasiIds = array_map(
        function ($id) {
            return (new FieldId())->setName($id);
        },
        $quasiIdNames
    );

    $sensitiveField = (new FieldId())
        ->setName($sensitiveAttribute);

    $statsConfig = (new LDiversityConfig())
        ->setQuasiIds($quasiIds)
        ->setSensitiveAttribute($sensitiveField);

    $privacyMetric = (new PrivacyMetric())
        ->setLDiversityConfig($statsConfig);

    // Construct items to be analyzed
    $bigqueryTable = (new BigQueryTable())
        ->setProjectId($dataProjectId)
        ->setDatasetId($datasetId)
        ->setTableId($tableId);

    // Construct the action to run when job completes
    $pubSubAction = (new PublishToPubSub())
        ->setTopic($topic->name());

    $action = (new Action())
        ->setPubSub($pubSubAction);

    // Construct risk analysis job config to run
    $riskJob = (new RiskAnalysisJobConfig())
        ->setPrivacyMetric($privacyMetric)
        ->setSourceTable($bigqueryTable)
        ->setActions([$action]);

    // Listen for job notifications via an existing topic/subscription.
    $subscription = $topic->subscription($subscriptionId);

    // Submit request
    $parent = "projects/$callingProjectId/locations/global";
    $createDlpJobRequest = (new CreateDlpJobRequest())
        ->setParent($parent)
        ->setRiskJob($riskJob);
    $job = $dlp->createDlpJob($createDlpJobRequest);

    // Poll Pub/Sub using exponential backoff until job finishes
    // Consider using an asynchronous execution model such as Cloud Functions
    $attempt = 1;
    $startTime = time();
    do {
        foreach ($subscription->pull() as $message) {
            if (
                isset($message->attributes()['DlpJobName']) &&
                $message->attributes()['DlpJobName'] === $job->getName()
            ) {
                $subscription->acknowledge($message);
                // Get the updated job. Loop to avoid race condition with DLP API.
                do {
                    $getDlpJobRequest = (new GetDlpJobRequest())
                        ->setName($job->getName());
                    $job = $dlp->getDlpJob($getDlpJobRequest);
                } while ($job->getState() == JobState::RUNNING);
                break 2; // break from parent do while
            }
        }
        print('Waiting for job to complete' . PHP_EOL);
        // Exponential backoff with max delay of 60 seconds
        sleep(min(60, pow(2, ++$attempt)));
    } while (time() - $startTime < 600); // 10 minute timeout

    // Print finding counts
    printf('Job %s status: %s' . PHP_EOL, $job->getName(), JobState::name($job->getState()));
    switch ($job->getState()) {
        case JobState::DONE:
            $histBuckets = $job->getRiskDetails()->getLDiversityResult()->getSensitiveValueFrequencyHistogramBuckets();

            foreach ($histBuckets as $bucketIndex => $histBucket) {
                // Print bucket stats
                printf('Bucket %s:' . PHP_EOL, $bucketIndex);
                printf(
                    '  Bucket size range: [%s, %s]' . PHP_EOL,
                    $histBucket->getSensitiveValueFrequencyLowerBound(),
                    $histBucket->getSensitiveValueFrequencyUpperBound()
                );

                // Print bucket values
                foreach ($histBucket->getBucketValues() as $percent => $valueBucket) {
                    printf(
                        '  Class size: %s' . PHP_EOL,
                        $valueBucket->getEquivalenceClassSize()
                    );

                    // Pretty-print quasi-ID values
                    print('  Quasi-ID values:' . PHP_EOL);
                    foreach ($valueBucket->getQuasiIdsValues() as $index => $value) {
                        print('    ' . $value->serializeToJsonString() . PHP_EOL);
                    }

                    // Pretty-print sensitive values
                    $topValues = $valueBucket->getTopSensitiveValues();
                    foreach ($topValues as $topValue) {
                        printf(
                            '  Sensitive value %s occurs %s time(s).' . PHP_EOL,
                            $topValue->getValue()->serializeToJsonString(),
                            $topValue->getCount()
                        );
                    }
                }
            }
            break;
        case JobState::FAILED:
            printf('Job %s had errors:' . PHP_EOL, $job->getName());
            $errors = $job->getErrors();
            foreach ($errors as $error) {
                var_dump($error->getDetails());
            }
            break;
        case JobState::PENDING:
            print('Job has not completed. Consider a longer timeout or an asynchronous execution model' . PHP_EOL);
            break;
        default:
            print('Unexpected job state. Most likely, the job is either running or has not yet started.');
    }
}

Python

Informationen zum Installieren und Verwenden der Clientbibliothek für den Schutz sensibler Daten finden Sie unter Clientbibliotheken für den Schutz sensibler Daten.

Richten Sie Standardanmeldedaten für Anwendungen ein, um sich beim Schutz sensibler Daten zu authentifizieren. Weitere Informationen finden Sie unter Authentifizierung für eine lokale Entwicklungsumgebung einrichten.

import concurrent.futures
from typing import List

import google.cloud.dlp
from google.cloud.dlp_v2 import types
import google.cloud.pubsub

def l_diversity_analysis(
    project: str,
    table_project_id: str,
    dataset_id: str,
    table_id: str,
    topic_id: str,
    subscription_id: str,
    sensitive_attribute: str,
    quasi_ids: List[str],
    timeout: int = 300,
) -> None:
    """Uses the Data Loss Prevention API to compute the l-diversity of a
        column set in a Google BigQuery table.
    Args:
        project: The Google Cloud project id to use as a parent resource.
        table_project_id: The Google Cloud project id where the BigQuery table
            is stored.
        dataset_id: The id of the dataset to inspect.
        table_id: The id of the table to inspect.
        topic_id: The name of the Pub/Sub topic to notify once the job
            completes.
        subscription_id: The name of the Pub/Sub subscription to use when
            listening for job completion notifications.
        sensitive_attribute: The column to measure l-diversity relative to.
        quasi_ids: A set of columns that form a composite key.
        timeout: The number of seconds to wait for a response from the API.

    Returns:
        None; the response from the API is printed to the terminal.
    """

    # Create helper function for unpacking values
    def get_values(obj: types.Value) -> int:
        return int(obj.integer_value)

    # Instantiate a client.
    dlp = google.cloud.dlp_v2.DlpServiceClient()

    # Convert the project id into a full resource id.
    topic = google.cloud.pubsub.PublisherClient.topic_path(project, topic_id)
    parent = f"projects/{project}/locations/global"

    # Location info of the BigQuery table.
    source_table = {
        "project_id": table_project_id,
        "dataset_id": dataset_id,
        "table_id": table_id,
    }

    # Convert quasi id list to Protobuf type
    def map_fields(field: str) -> dict:
        return {"name": field}

    quasi_ids = map(map_fields, quasi_ids)

    # Tell the API where to send a notification when the job is complete.
    actions = [{"pub_sub": {"topic": topic}}]

    # Configure risk analysis job
    # Give the name of the numeric column to compute risk metrics for
    risk_job = {
        "privacy_metric": {
            "l_diversity_config": {
                "quasi_ids": quasi_ids,
                "sensitive_attribute": {"name": sensitive_attribute},
            }
        },
        "source_table": source_table,
        "actions": actions,
    }

    # Call API to start risk analysis job
    operation = dlp.create_dlp_job(request={"parent": parent, "risk_job": risk_job})

    def callback(message: google.cloud.pubsub_v1.subscriber.message.Message) -> None:
        if message.attributes["DlpJobName"] == operation.name:
            # This is the message we're looking for, so acknowledge it.
            message.ack()

            # Now that the job is done, fetch the results and print them.
            job = dlp.get_dlp_job(request={"name": operation.name})
            print(f"Job name: {job.name}")
            histogram_buckets = (
                job.risk_details.l_diversity_result.sensitive_value_frequency_histogram_buckets  # noqa: E501
            )
            # Print bucket stats
            for i, bucket in enumerate(histogram_buckets):
                print(f"Bucket {i}:")
                print(
                    "   Bucket size range: [{}, {}]".format(
                        bucket.sensitive_value_frequency_lower_bound,
                        bucket.sensitive_value_frequency_upper_bound,
                    )
                )
                for value_bucket in bucket.bucket_values:
                    print(
                        "   Quasi-ID values: {}".format(
                            map(get_values, value_bucket.quasi_ids_values)
                        )
                    )
                    print(f"   Class size: {value_bucket.equivalence_class_size}")
                    for value in value_bucket.top_sensitive_values:
                        print(
                            "   Sensitive value {} occurs {} time(s)".format(
                                value.value, value.count
                            )
                        )
            subscription.set_result(None)
        else:
            # This is not the message we're looking for.
            message.drop()

    # Create a Pub/Sub client and find the subscription. The subscription is
    # expected to already be listening to the topic.
    subscriber = google.cloud.pubsub.SubscriberClient()
    subscription_path = subscriber.subscription_path(project, subscription_id)
    subscription = subscriber.subscribe(subscription_path, callback)

    try:
        subscription.result(timeout=timeout)
    except concurrent.futures.TimeoutError:
        print(
            "No event received before the timeout. Please verify that the "
            "subscription provided is subscribed to the topic provided."
        )
        subscription.close()

REST

Wenn Sie einen neuen Risikoanalysejob zur Berechnung der l-Diversität ausführen möchten, senden Sie eine Anfrage an die Ressource projects.dlpJobs, wobei PROJECT_ID für Ihre Projekt-ID steht.

https://dlp.googleapis.com/v2/projects/PROJECT_ID/dlpJobs

Die Anfrage enthält ein RiskAnalysisJobConfig-Objekt, das Folgendes umfasst:

  • Ein PrivacyMetric-Objekt. Hier geben Sie durch Einschließen eines LDiversityConfig-Objekts an, dass l-Diversität berechnet wird.

  • Ein BigQueryTable-Objekt. Geben Sie die zu untersuchende BigQuery-Tabelle an. Dazu beziehen Sie die folgenden Parameter ein:

    • projectId: die Projekt-ID des Projekts, das die Tabelle enthält
    • datasetId: die Dataset-ID der Tabelle
    • tableId: der Name der Tabelle
  • Ein oder mehrere Action-Objekte für Aktionen, die nach Abschluss des Jobs in der angegebenen Reihenfolge ausgeführt werden sollen. Jedes Action-Objekt kann eine der folgenden Aktionen enthalten:

    Geben Sie im Objekt LDiversityConfig Folgendes an:

    • quasiIds[]: eine Gruppe von Quasi-Identifikatoren (FieldId-Objekten), die angeben, wie Äquivalenzklassen für die Berechnung der l-Diversität definiert werden. Wie bei KAnonymityConfig werden sie auch hier als ein einzelner zusammengesetzter Schlüssel betrachtet, wenn Sie mehrere Felder angeben.
    • sensitiveAttribute: Feld mit vertraulichen Daten (FieldId-Objekt) zur Berechnung des l-Diversitätswerts.

Sobald Sie eine Anfrage an die DLP API senden, wird der Risikoanalysejob gestartet.

Abgeschlossene Risikoanalysejobs auflisten

Sie können eine Liste der Risikoanalysejobs aufrufen, die im aktuellen Projekt ausgeführt wurden.

Console

So listen Sie laufende und zuvor ausgeführte Risikoanalysejobs in der Google Cloud Console auf:

  1. Öffnen Sie in der Google Cloud Console den Schutz sensibler Daten.

    Zur Seite „Schutz sensibler Daten“

  2. Klicken Sie oben auf der Seite auf den Tab Jobs und Job-Trigger.

  3. Klicken Sie auf den Tab Risikojobs.

Die Liste der Risikojobs wird angezeigt.

Protokoll

Senden Sie eine GET-Anfrage an die Ressource projects.dlpJobs, um gerade ausgeführte und zuvor ausgeführte Risikoanalysejobs aufzulisten. Durch Hinzufügen eines Jobtypfilters (?type=RISK_ANALYSIS_JOB) wird die Antwort auf nur Risikoanalysejobs beschränkt.

https://dlp.googleapis.com/v2/projects/PROJECT_ID/dlpJobs?type=RISK_ANALYSIS_JOB

Die erhaltene Antwort enthält eine JSON-Darstellung aller aktuellen und vorherigen Risikoanalysejobs.

l-Diversität-Jobergebnisse anzeigen

Der Schutz sensibler Daten in der Google Cloud Console bietet integrierte Visualisierungen für abgeschlossene l-Diversitätsjobs. Nachdem Sie der Anleitung im vorherigen Abschnitt gefolgt sind, wählen Sie aus der Liste der Risikoanalysejobs den Job aus, für den Sie Ergebnisse ansehen möchten. Wenn der Job erfolgreich ausgeführt wurde, sieht die Seite Risikoanalysedetails oben so aus:

Oben auf der Seite finden Sie Informationen zum l-Diversitäts-Risikojob, einschließlich seiner Job-ID und unter Container seine Ressourcenstandort.

Klicken Sie auf den Tab L-Diversität, um die Ergebnisse der l-Diversitätsberechnung anzuzeigen. Klicken Sie zum Anzeigen der Konfiguration des Risikoanalysejobs auf den Tab Konfiguration.

Auf dem Tab L-Diversität werden zuerst der sensible Wert und die Quasi-Kennzeichnungen zur Berechnung der l-Diversität aufgeführt.

Risikodiagramm

Das Diagramm Re-Identifikationsrisiko stellt auf der y-Achse den potenziellen Prozentsatz des Datenverlusts sowohl für eindeutige Zeilen als auch für eindeutige Quasi-Kennzeichnungs-Kombinationen dar, um auf der x-Achse einen l-Diversitätswert anzugeben. Die Farbe des Diagramms zeigt auch das Risikopotenzial an. Dunklere Blautöne weisen auf ein höheres Risiko hin, hellere auf ein geringeres Risiko.

Höhere l-Diversitätswerte weisen auf eine geringere Vielfalt von Werten hin. Dadurch kann ein Dataset weniger re-identifizierbarer und sicherer werden. Um höhere I-Diversitätswerte zu erreichen, müssten Sie jedoch höhere Prozentsätze der gesamten Zeilen und höhere eindeutige Quasi-Kennzeichnungs-Kombinationen entfernen, was den Nutzen der Daten verringern könnte. Bewegen Sie den Mauszeiger über das Diagramm, um einen bestimmten potenziellen prozentualen Verlustwert für einen bestimmten I-Diversitätswert anzuzeigen. Wie im Screenshot dargestellt, wird im Diagramm eine Kurzinfo angezeigt.

Klicken Sie auf den entsprechenden Datenpunkt, um weitere Details zu einem bestimmten l-Diversitätswert anzuzeigen. Unter dem Diagramm wird eine detaillierte Erläuterung angezeigt und weiter unten auf der Seite wird eine Beispieldatentabelle angezeigt.

Risiko-Beispieldatentabelle

Die zweite Komponente der Ergebnisseite für Risikojobs ist die Beispieldatentabelle. Darin werden Quasi-Identifikatoren-Kombinationen für einen bestimmten Ziel-l-Diversitätswert angezeigt.

Die erste Spalte der Tabelle enthält die k-Anonymitätswerte. Klicken Sie auf einen l-Diversitätswert, um die entsprechenden Beispieldaten anzuzeigen, die gelöscht werden müssten, um diesen Wert zu erreichen.

Die zweite Spalte zeigt den jeweiligen potenziellen Datenverlust von einzigartigen Zeilen und Quasi-Identifikatoren-Kombinationen zum Erzielen des ausgewählten l-Diversitätswerts sowie die Anzahl der Gruppen mit mindestens l vertraulichen Attributen und die Gesamtzahl der Datensätze an.

Die letzte Spalte enthält eine Auswahl an Gruppen die eine Quasi-Identifikatoren-Kombination gemeinsam nutzen und die Anzahl der Datensätze, die für diese Kombination vorhanden sind.

Jobdetails mit REST abrufen

Wenn Sie die Ergebnisse des l-Diversitäts-Risikoanalysejobs mit der REST API abrufen möchten, senden Sie die folgende GET-Anfrage an die projects.dlpJobs-Ressource. Ersetzen Sie PROJECT_ID durch Ihre Projekt-ID und JOB_ID durch die ID des Jobs, für den Sie Ergebnisse erhalten möchten. Die Job-ID wurde beim Start des Jobs zurückgegeben und kann auch durch Auflisten aller Jobs abgerufen werden.

GET https://dlp.googleapis.com/v2/projects/PROJECT_ID/dlpJobs/JOB_ID

Die Anfrage gibt ein JSON-Objekt zurück, das eine Instanz des Jobs enthält. Die Ergebnisse der Analyse befinden sich im Schlüssel "riskDetails" in einem AnalyzeDataSourceRiskDetails-Objekt. Weitere Informationen finden Sie in der API-Referenz zur Ressource DlpJob.

Nächste Schritte