클러스터 업데이트
컬렉션을 사용해 정리하기
내 환경설정을 기준으로 콘텐츠를 저장하고 분류하세요.
이 샘플에서는 Python 클라이언트 라이브러리를 사용하여 Cloud Dataproc 클러스터를 업데이트하는 방법을 안내합니다.
코드 샘플
달리 명시되지 않는 한 이 페이지의 콘텐츠에는 Creative Commons Attribution 4.0 라이선스에 따라 라이선스가 부여되며, 코드 샘플에는 Apache 2.0 라이선스에 따라 라이선스가 부여됩니다. 자세한 내용은 Google Developers 사이트 정책을 참조하세요. 자바는 Oracle 및/또는 Oracle 계열사의 등록 상표입니다.
[[["이해하기 쉬움","easyToUnderstand","thumb-up"],["문제가 해결됨","solvedMyProblem","thumb-up"],["기타","otherUp","thumb-up"]],[["이해하기 어려움","hardToUnderstand","thumb-down"],["잘못된 정보 또는 샘플 코드","incorrectInformationOrSampleCode","thumb-down"],["필요한 정보/샘플이 없음","missingTheInformationSamplesINeed","thumb-down"],["번역 문제","translationIssue","thumb-down"],["기타","otherDown","thumb-down"]],[],[[["\u003cp\u003eThis sample demonstrates how to update a Cloud Dataproc cluster using the Python client library.\u003c/p\u003e\n"],["\u003cp\u003eThe process involves creating a client with the specified cluster region, retrieving the cluster to update, and then updating the desired parameters such as the number of instances.\u003c/p\u003e\n"],["\u003cp\u003eThe sample utilizes the \u003ccode\u003edataproc.ClusterControllerClient\u003c/code\u003e to manage cluster operations and the \u003ccode\u003eupdate_cluster\u003c/code\u003e function to apply changes.\u003c/p\u003e\n"],["\u003cp\u003eAuthentication to Dataproc is required, utilizing Application Default Credentials.\u003c/p\u003e\n"],["\u003cp\u003eYou can find more samples for other Google Cloud products using the Google Cloud sample browser.\u003c/p\u003e\n"]]],[],null,["This sample walks a user through updating a Cloud Dataproc cluster using the Python client library.\n\nCode sample \n\nPython\n\n\nBefore trying this sample, follow the Python setup instructions in the\n[Dataproc quickstart using\nclient libraries](/dataproc/docs/quickstarts/quickstart-lib).\n\n\nFor more information, see the\n[Dataproc Python API\nreference documentation](/python/docs/reference/dataproc/latest).\n\n\nTo authenticate to Dataproc, set up Application Default Credentials.\nFor more information, see\n\n[Set up authentication for a local development environment](/docs/authentication/set-up-adc-local-dev-environment).\n\n from google.cloud import dataproc_v1 as dataproc\n\n\n def update_cluster(project_id, region, cluster_name, new_num_instances):\n \"\"\"This sample walks a user through updating a Cloud Dataproc cluster\n using the Python client library.\n\n Args:\n project_id (str): Project to use for creating resources.\n region (str): Region where the resources should live.\n cluster_name (str): Name to use for creating a cluster.\n \"\"\"\n\n # Create a client with the endpoint set to the desired cluster region.\n client = dataproc.ClusterControllerClient(\n client_options={\"api_endpoint\": f\"{region}-dataproc.googleapis.com:443\"}\n )\n\n # Get cluster you wish to update.\n cluster = client.get_cluster(\n project_id=project_id, region=region, cluster_name=cluster_name\n )\n\n # Update number of clusters\n mask = {\"paths\": {\"config.worker_config.num_instances\": str(new_num_instances)}}\n\n # Update cluster config\n cluster.config.worker_config.num_instances = new_num_instances\n\n # Update cluster\n operation = client.update_cluster(\n project_id=project_id,\n region=region,\n cluster=cluster,\n cluster_name=cluster_name,\n update_mask=mask,\n )\n\n # Output a success message.\n updated_cluster = operation.result()\n print(f\"Cluster was updated successfully: {updated_cluster.cluster_name}\")\n\nWhat's next\n\n\nTo search and filter code samples for other Google Cloud products, see the\n[Google Cloud sample browser](/docs/samples?product=dataproc)."]]