Invio di un job

Mantieni tutto organizzato con le raccolte Salva e classifica i contenuti in base alle tue preferenze.

Invia un job Spark a un cluster Dataproc.

Per saperne di più

Per la documentazione dettagliata che include questo esempio di codice, vedi quanto segue:

Esempio di codice

Go

Prima di provare questo esempio, segui le istruzioni per la configurazione di Go nella guida rapida di Dataproc utilizzando le librerie client. Per ulteriori informazioni, consulta la documentazione di riferimento dell'API Dataproc Go.

import (
	"context"
	"fmt"
	"io"
	"io/ioutil"
	"log"
	"regexp"

	dataproc "cloud.google.com/go/dataproc/apiv1"
	"cloud.google.com/go/dataproc/apiv1/dataprocpb"
	"cloud.google.com/go/storage"
	"google.golang.org/api/option"
)

func submitJob(w io.Writer, projectID, region, clusterName string) error {
	// projectID := "your-project-id"
	// region := "us-central1"
	// clusterName := "your-cluster"
	ctx := context.Background()

	// Create the job client.
	endpoint := fmt.Sprintf("%s-dataproc.googleapis.com:443", region)
	jobClient, err := dataproc.NewJobControllerClient(ctx, option.WithEndpoint(endpoint))
	if err != nil {
		log.Fatalf("error creating the job client: %s\n", err)
	}

	// Create the job config.
	submitJobReq := &dataprocpb.SubmitJobRequest{
		ProjectId: projectID,
		Region:    region,
		Job: &dataprocpb.Job{
			Placement: &dataprocpb.JobPlacement{
				ClusterName: clusterName,
			},
			TypeJob: &dataprocpb.Job_SparkJob{
				SparkJob: &dataprocpb.SparkJob{
					Driver: &dataprocpb.SparkJob_MainClass{
						MainClass: "org.apache.spark.examples.SparkPi",
					},
					JarFileUris: []string{"file:///usr/lib/spark/examples/jars/spark-examples.jar"},
					Args:        []string{"1000"},
				},
			},
		},
	}

	submitJobOp, err := jobClient.SubmitJobAsOperation(ctx, submitJobReq)
	if err != nil {
		return fmt.Errorf("error with request to submitting job: %v", err)
	}

	submitJobResp, err := submitJobOp.Wait(ctx)
	if err != nil {
		return fmt.Errorf("error submitting job: %v", err)
	}

	re := regexp.MustCompile("gs://(.+?)/(.+)")
	matches := re.FindStringSubmatch(submitJobResp.DriverOutputResourceUri)

	if len(matches) < 3 {
		return fmt.Errorf("regex error: %s", submitJobResp.DriverOutputResourceUri)
	}

	// Dataproc job output gets saved to a GCS bucket allocated to it.
	storageClient, err := storage.NewClient(ctx)
	if err != nil {
		return fmt.Errorf("error creating storage client: %v", err)
	}

	obj := fmt.Sprintf("%s.000000000", matches[2])
	reader, err := storageClient.Bucket(matches[1]).Object(obj).NewReader(ctx)
	if err != nil {
		return fmt.Errorf("error reading job output: %v", err)
	}

	defer reader.Close()

	body, err := ioutil.ReadAll(reader)
	if err != nil {
		return fmt.Errorf("could not read output from Dataproc Job: %v", err)
	}

	fmt.Fprintf(w, "Job finished successfully: %s", body)

	return nil
}

Java

Prima di provare questo esempio, segui le istruzioni per la configurazione di Java nella guida rapida di Dataproc utilizzando le librerie client. Per ulteriori informazioni, consulta la documentazione di riferimento dell'API Dataproc Java.


import com.google.api.gax.longrunning.OperationFuture;
import com.google.cloud.dataproc.v1.Job;
import com.google.cloud.dataproc.v1.JobControllerClient;
import com.google.cloud.dataproc.v1.JobControllerSettings;
import com.google.cloud.dataproc.v1.JobMetadata;
import com.google.cloud.dataproc.v1.JobPlacement;
import com.google.cloud.dataproc.v1.SparkJob;
import com.google.cloud.storage.Blob;
import com.google.cloud.storage.Storage;
import com.google.cloud.storage.StorageOptions;
import java.io.IOException;
import java.util.concurrent.ExecutionException;
import java.util.regex.Matcher;
import java.util.regex.Pattern;

public class SubmitJob {

  public static void submitJob() throws IOException, InterruptedException {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "your-project-id";
    String region = "your-project-region";
    String clusterName = "your-cluster-name";
    submitJob(projectId, region, clusterName);
  }

  public static void submitJob(String projectId, String region, String clusterName)
      throws IOException, InterruptedException {
    String myEndpoint = String.format("%s-dataproc.googleapis.com:443", region);

    // Configure the settings for the job controller client.
    JobControllerSettings jobControllerSettings =
        JobControllerSettings.newBuilder().setEndpoint(myEndpoint).build();

    // Create a job controller client with the configured settings. Using a try-with-resources
    // closes the client,
    // but this can also be done manually with the .close() method.
    try (JobControllerClient jobControllerClient =
        JobControllerClient.create(jobControllerSettings)) {

      // Configure cluster placement for the job.
      JobPlacement jobPlacement = JobPlacement.newBuilder().setClusterName(clusterName).build();

      // Configure Spark job settings.
      SparkJob sparkJob =
          SparkJob.newBuilder()
              .setMainClass("org.apache.spark.examples.SparkPi")
              .addJarFileUris("file:///usr/lib/spark/examples/jars/spark-examples.jar")
              .addArgs("1000")
              .build();

      Job job = Job.newBuilder().setPlacement(jobPlacement).setSparkJob(sparkJob).build();

      // Submit an asynchronous request to execute the job.
      OperationFuture<Job, JobMetadata> submitJobAsOperationAsyncRequest =
          jobControllerClient.submitJobAsOperationAsync(projectId, region, job);

      Job response = submitJobAsOperationAsyncRequest.get();

      // Print output from Google Cloud Storage.
      Matcher matches =
          Pattern.compile("gs://(.*?)/(.*)").matcher(response.getDriverOutputResourceUri());
      matches.matches();

      Storage storage = StorageOptions.getDefaultInstance().getService();
      Blob blob = storage.get(matches.group(1), String.format("%s.000000000", matches.group(2)));

      System.out.println(
          String.format("Job finished successfully: %s", new String(blob.getContent())));

    } catch (ExecutionException e) {
      // If the job does not complete successfully, print the error message.
      System.err.println(String.format("submitJob: %s ", e.getMessage()));
    }
  }
}

Node.js

Prima di provare questo esempio, segui le istruzioni per la configurazione di Node.js nella guida rapida di Dataproc utilizzando le librerie client. Per ulteriori informazioni, consulta la documentazione di riferimento dell'API Dataproc Node.js.

const dataproc = require('@google-cloud/dataproc');
const {Storage} = require('@google-cloud/storage');

// TODO(developer): Uncomment and set the following variables
// projectId = 'YOUR_PROJECT_ID'
// region = 'YOUR_CLUSTER_REGION'
// clusterName = 'YOUR_CLUSTER_NAME'

// Create a client with the endpoint set to the desired cluster region
const jobClient = new dataproc.v1.JobControllerClient({
  apiEndpoint: `${region}-dataproc.googleapis.com`,
  projectId: projectId,
});

async function submitJob() {
  const job = {
    projectId: projectId,
    region: region,
    job: {
      placement: {
        clusterName: clusterName,
      },
      sparkJob: {
        mainClass: 'org.apache.spark.examples.SparkPi',
        jarFileUris: [
          'file:///usr/lib/spark/examples/jars/spark-examples.jar',
        ],
        args: ['1000'],
      },
    },
  };

  const [jobOperation] = await jobClient.submitJobAsOperation(job);
  const [jobResponse] = await jobOperation.promise();

  const matches =
    jobResponse.driverOutputResourceUri.match('gs://(.*?)/(.*)');

  const storage = new Storage();

  const output = await storage
    .bucket(matches[1])
    .file(`${matches[2]}.000000000`)
    .download();

  // Output a success message.
  console.log(`Job finished successfully: ${output}`);

Python

Prima di provare questo esempio, segui le istruzioni per la configurazione di Python nella guida rapida di Dataproc utilizzando le librerie client. Per ulteriori informazioni, consulta la documentazione di riferimento dell'API Dataproc Python.

import re

from google.cloud import dataproc_v1 as dataproc
from google.cloud import storage

def submit_job(project_id, region, cluster_name):
    # Create the job client.
    job_client = dataproc.JobControllerClient(
        client_options={"api_endpoint": "{}-dataproc.googleapis.com:443".format(region)}
    )

    # Create the job config. 'main_jar_file_uri' can also be a
    # Google Cloud Storage URL.
    job = {
        "placement": {"cluster_name": cluster_name},
        "spark_job": {
            "main_class": "org.apache.spark.examples.SparkPi",
            "jar_file_uris": ["file:///usr/lib/spark/examples/jars/spark-examples.jar"],
            "args": ["1000"],
        },
    }

    operation = job_client.submit_job_as_operation(
        request={"project_id": project_id, "region": region, "job": job}
    )
    response = operation.result()

    # Dataproc job output gets saved to the Google Cloud Storage bucket
    # allocated to the job. Use a regex to obtain the bucket and blob info.
    matches = re.match("gs://(.*?)/(.*)", response.driver_output_resource_uri)

    output = (
        storage.Client()
        .get_bucket(matches.group(1))
        .blob(f"{matches.group(2)}.000000000")
        .download_as_string()
    )

    print(f"Job finished successfully: {output}")

Passaggi successivi

Per cercare e filtrare esempi di codice per altri prodotti Google Cloud, consulta il browser di esempio Google Cloud.