Grave mensagens com atributos personalizados no Pub/Sub

Use o Dataflow para gravar mensagens com atributos personalizados no Pub/Sub

Mais informações

Para ver a documentação detalhada que inclui este exemplo de código, consulte:

Exemplo de código

Java

Para autenticar no Dataflow, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

import java.nio.charset.StandardCharsets;
import java.util.Arrays;
import java.util.HashMap;
import java.util.List;
import org.apache.beam.sdk.Pipeline;
import org.apache.beam.sdk.coders.DefaultCoder;
import org.apache.beam.sdk.extensions.avro.coders.AvroCoder;
import org.apache.beam.sdk.io.gcp.pubsub.PubsubIO;
import org.apache.beam.sdk.io.gcp.pubsub.PubsubMessage;
import org.apache.beam.sdk.options.Description;
import org.apache.beam.sdk.options.PipelineOptions;
import org.apache.beam.sdk.options.PipelineOptionsFactory;
import org.apache.beam.sdk.transforms.Create;
import org.apache.beam.sdk.transforms.MapElements;
import org.apache.beam.sdk.values.TypeDescriptor;



public class PubSubWriteWithAttributes {
  public interface Options extends PipelineOptions {
    @Description("The Pub/Sub topic to write to. Format: projects/<PROJECT>/topics/<TOPIC>")
    String getTopic();

    void setTopic(String value);
  }

  // A custom datatype for the source data.
  @DefaultCoder(AvroCoder.class)
  static class ExampleData {
    public String name;
    public String product;
    public Long timestamp; // Epoch time in milliseconds

    public ExampleData() {}

    public ExampleData(String name, String product, Long timestamp) {
      this.name = name;
      this.product = product;
      this.timestamp = timestamp;
    }
  }

  // Write messages to a Pub/Sub topic.
  public static void main(String[] args) {
    // Example source data.
    final List<ExampleData> messages = Arrays.asList(
        new ExampleData("Robert", "TV", 1613141590000L),
        new ExampleData("Maria", "Phone", 1612718280000L),
        new ExampleData("Juan", "Laptop", 1611618000000L),
        new ExampleData("Rebeca", "Videogame", 1610000000000L)
    );

    // Parse the pipeline options passed into the application. Example:
    //   --runner=DirectRunner --topic=projects/MY_PROJECT/topics/MY_TOPIC"
    // For more information, see https://beam.apache.org/documentation/programming-guide/#configuring-pipeline-options
    var options = PipelineOptionsFactory.fromArgs(args).withValidation().as(Options.class);
    var pipeline = Pipeline.create(options);
    pipeline
        // Create some data to write to Pub/Sub.
        .apply(Create.of(messages))
        // Convert the data to Pub/Sub messages.
        .apply(MapElements
            .into(TypeDescriptor.of(PubsubMessage.class))
            .via((message -> {
              byte[] payload = message.product.getBytes(StandardCharsets.UTF_8);
              // Create attributes for each message.
              HashMap<String, String> attributes = new HashMap<String, String>();
              attributes.put("buyer", message.name);
              attributes.put("timestamp", Long.toString(message.timestamp));
              return new PubsubMessage(payload, attributes);
            })))
        // Write the messages to Pub/Sub.
        .apply(PubsubIO.writeMessages().to(options.getTopic()));
    pipeline.run().waitUntilFinish();
  }
}

Python

Para autenticar no Dataflow, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

import argparse
from typing import Any, Dict, List

import apache_beam as beam
from apache_beam.io import PubsubMessage
from apache_beam.io import WriteToPubSub
from apache_beam.options.pipeline_options import PipelineOptions

from typing_extensions import Self


def item_to_message(item: Dict[str, Any]) -> PubsubMessage:
    # Re-import needed types. When using the Dataflow runner, this
    # function executes on a worker, where the global namespace is not
    # available. For more information, see:
    # https://cloud.google.com/dataflow/docs/guides/common-errors#name-error
    from apache_beam.io import PubsubMessage

    attributes = {"buyer": item["name"], "timestamp": str(item["ts"])}
    data = bytes(item["product"], "utf-8")

    return PubsubMessage(data=data, attributes=attributes)


def write_to_pubsub(argv: List[str] = None) -> None:
    # Parse the pipeline options passed into the application. Example:
    #     --topic=$TOPIC_PATH --streaming
    # For more information, see
    # https://beam.apache.org/documentation/programming-guide/#configuring-pipeline-options
    class MyOptions(PipelineOptions):
        @classmethod
        # Define a custom pipeline option to specify the Pub/Sub topic.
        def _add_argparse_args(cls: Self, parser: argparse.ArgumentParser) -> None:
            parser.add_argument("--topic", required=True)

    example_data = [
        {"name": "Robert", "product": "TV", "ts": 1613141590000},
        {"name": "Maria", "product": "Phone", "ts": 1612718280000},
        {"name": "Juan", "product": "Laptop", "ts": 1611618000000},
        {"name": "Rebeca", "product": "Video game", "ts": 1610000000000},
    ]
    options = MyOptions()

    with beam.Pipeline(options=options) as pipeline:
        (
            pipeline
            | "Create elements" >> beam.Create(example_data)
            | "Convert to Pub/Sub messages" >> beam.Map(item_to_message)
            | WriteToPubSub(topic=options.topic, with_attributes=True)
        )

    print("Pipeline ran successfully.")

A seguir

Para pesquisar e filtrar exemplos de código de outros produtos do Google Cloud, consulte a pesquisa de exemplos de código do Google Cloud.