Teks Cloud Storage ke BigQuery (Streaming) dengan template UDF Python

Pipeline Teks Cloud Storage ke BigQuery adalah pipeline streaming yang melakukan streaming file teks yang disimpan di Cloud Storage, mengubahnya menggunakan fungsi yang ditentukan pengguna (UDF) Python yang Anda berikan, dan menambahkan hasilnya ke BigQuery.

Pipeline berjalan tanpa batas waktu dan perlu dihentikan secara manual melalui cancel, bukan drain, karena penggunaan transformasi Watch, yang merupakan DoFn yang dapat dipisah dan tidak mendukung pemisahan.

Persyaratan pipeline

  • Buat file JSON yang mendeskripsikan skema tabel output Anda di BigQuery.

    Pastikan terdapat array JSON level teratas yang berjudul fields dan isinya mengikuti pola {"name": "COLUMN_NAME", "type": "DATA_TYPE"}. Contoh:

    {
      "fields": [
        {
          "name": "name",
          "type": "STRING"
        },
        {
          "name": "age",
          "type": "INTEGER"
        }
      ]
    }
  • Buat file Python (.py) dengan fungsi UDF yang menyediakan logika untuk mengubah baris teks. Fungsi Anda harus menampilkan string JSON.

    Contoh berikut memisahkan setiap baris file CSV, membuat objek JSON dengan nilai, dan menampilkan string JSON:

    import json
    def process(value):
      data = value.split(',')
      obj = { 'name': data[0], 'age': int(data[1]) }
      return json.dumps(obj)

Parameter template

Parameter Deskripsi
pythonExternalTextTransformGcsPath URI Cloud Storage file kode Python yang menentukan fungsi yang ditentukan pengguna (UDF) yang ingin Anda gunakan. Misalnya, gs://my-bucket/my-udfs/my_file.py.
pythonExternalTextTransformFunctionName Nama fungsi yang ditentukan pengguna (UDF) Python yang ingin Anda gunakan.
JSONPath Lokasi Cloud Storage file skema BigQuery Anda, dideskripsikan sebagai JSON. Misalnya: gs://path/to/my/schema.json.
outputTable Tabel BigQuery yang sepenuhnya memenuhi syarat. Contoh: my-project:dataset.table
inputFilePattern Lokasi Cloud Storage teks yang ingin Anda proses. Misalnya: gs://my-bucket/my-files/text.txt.
bigQueryLoadingTemporaryDirectory Temporary directory for BigQuery loading process. Contoh: gs://my-bucket/my-files/temp_dir
outputDeadletterTable Tabel untuk pesan yang gagal mencapai tabel output. Misalnya: my-project:dataset.my-unprocessed-table. Jika tidak ada, folder tersebut akan dibuat selama eksekusi pipeline. Jika tidak ditentukan, <outputTableSpec>_error_records akan digunakan.

Fungsi yang ditentukan pengguna (UDF)

Template ini memerlukan UDF yang mengurai file input, seperti yang dijelaskan dalam Persyaratan pipeline. Template memanggil UDF untuk setiap baris teks dalam setiap file input. Untuk mengetahui informasi selengkapnya tentang cara membuat UDF, lihat Membuat fungsi yang ditentukan pengguna untuk template Dataflow.

Spesifikasi fungsi

UDF memiliki spesifikasi berikut:

  • Input: satu baris teks dari file input.
  • Output: string JSON yang cocok dengan skema tabel tujuan BigQuery.

Menjalankan template

Konsol

  1. Buka halaman Create job from template Dataflow.
  2. Buka Buat tugas dari template
  3. Di kolom Nama tugas, masukkan nama tugas yang unik.
  4. Opsional: Untuk Endpoint regional, pilih nilai dari menu drop-down. Region defaultnya adalah us-central1.

    Untuk mengetahui daftar region tempat Anda dapat menjalankan tugas Dataflow, lihat Lokasi Dataflow.

  5. Dari menu drop-down Dataflow template, pilih the Cloud Storage Text to BigQuery (Stream) with Python UDF template.
  6. Di kolom parameter yang disediakan, masukkan nilai parameter Anda.
  7. Klik Run job.

gcloud

Di shell atau terminal, jalankan template:

gcloud dataflow flex-template run JOB_NAME \
    --template-file-gcs-location gs://dataflow-templates-REGION_NAME/VERSION/flex/Stream_GCS_Text_to_BigQuery_Xlang \
    --region REGION_NAME \
    --staging-location STAGING_LOCATION \
    --parameters \
pythonExternalTextTransformGcsPath=PATH_TO_PYTHON_UDF_FILE,\
pythonExternalTextTransformFunctionName=PYTHON_FUNCTION,\
JSONPath=PATH_TO_BIGQUERY_SCHEMA_JSON,\
inputFilePattern=PATH_TO_TEXT_DATA,\
outputTable=BIGQUERY_TABLE,\
outputDeadletterTable=BIGQUERY_UNPROCESSED_TABLE,\
bigQueryLoadingTemporaryDirectory=PATH_TO_TEMP_DIR_ON_GCS

Ganti kode berikut:

  • JOB_NAME: nama tugas unik pilihan Anda
  • REGION_NAME: region tempat Anda ingin men-deploy tugas Dataflow—misalnya, us-central1
  • VERSION: versi template yang ingin Anda gunakan

    Anda dapat menggunakan nilai berikut:

  • STAGING_LOCATION: lokasi untuk melakukan staging file lokal (misalnya, gs://your-bucket/staging)
  • PYTHON_FUNCTION: Nama fungsi yang ditentukan pengguna (UDF) Python yang ingin Anda gunakan.
  • PATH_TO_BIGQUERY_SCHEMA_JSON: jalur Cloud Storage ke file JSON yang berisi definisi skema
  • PATH_TO_PYTHON_UDF_FILE: URI Cloud Storage file kode Python yang menentukan fungsi yang ditentukan pengguna (UDF) yang ingin Anda gunakan. Contoh, gs://my-bucket/my-udfs/my_file.py.
  • PATH_TO_TEXT_DATA: jalur Cloud Storage ke set data teks Anda
  • BIGQUERY_TABLE: nama tabel BigQuery Anda
  • BIGQUERY_UNPROCESSED_TABLE: nama tabel BigQuery Anda untuk pesan yang belum diproses
  • PATH_TO_TEMP_DIR_ON_GCS: jalur Cloud Storage ke direktori sementara

API

Untuk menjalankan template menggunakan REST API, kirim permintaan POST HTTP. Untuk mengetahui informasi selengkapnya tentang API dan cakupan otorisasinya, lihat projects.templates.launch.

POST https://dataflow.googleapis.com/v1b3/projects/PROJECT_ID/locations/LOCATION/flexTemplates:launch
{
   "launch_parameter": {
      "jobName": "JOB_NAME",
      "parameters": {
       "pythonExternalTextTransformFunctionName": "PYTHON_FUNCTION",
       "JSONPath": "PATH_TO_BIGQUERY_SCHEMA_JSON",
       "pythonExternalTextTransformGcsPath": "PATH_TO_PYTHON_UDF_FILE",
       "inputFilePattern":"PATH_TO_TEXT_DATA",
       "outputTable":"BIGQUERY_TABLE",
       "outputDeadletterTable":"BIGQUERY_UNPROCESSED_TABLE",
       "bigQueryLoadingTemporaryDirectory": "PATH_TO_TEMP_DIR_ON_GCS"
      },
      "containerSpecGcsPath": "gs://dataflow-templates-LOCATION/VERSION/flex/Stream_GCS_Text_to_BigQuery_Xlang",
   }
}

Ganti kode berikut:

  • PROJECT_ID: ID project Google Cloud tempat Anda ingin menjalankan tugas Dataflow
  • JOB_NAME: nama tugas unik pilihan Anda
  • LOCATION: region tempat Anda ingin men-deploy tugas Dataflow—misalnya, us-central1
  • VERSION: versi template yang ingin Anda gunakan

    Anda dapat menggunakan nilai berikut:

  • STAGING_LOCATION: lokasi untuk melakukan staging file lokal (misalnya, gs://your-bucket/staging)
  • PYTHON_FUNCTION: Nama fungsi yang ditentukan pengguna (UDF) Python yang ingin Anda gunakan.
  • PATH_TO_BIGQUERY_SCHEMA_JSON: jalur Cloud Storage ke file JSON yang berisi definisi skema
  • PATH_TO_PYTHON_UDF_FILE: URI Cloud Storage file kode Python yang menentukan fungsi yang ditentukan pengguna (UDF) yang ingin Anda gunakan. Contoh, gs://my-bucket/my-udfs/my_file.py.
  • PATH_TO_TEXT_DATA: jalur Cloud Storage ke set data teks Anda
  • BIGQUERY_TABLE: nama tabel BigQuery Anda
  • BIGQUERY_UNPROCESSED_TABLE: nama tabel BigQuery Anda untuk pesan yang belum diproses
  • PATH_TO_TEMP_DIR_ON_GCS: jalur Cloud Storage ke direktori sementara

Langkah selanjutnya