Modello Parquet di Cloud Storage a Bigtable

Il modello Parquet di Cloud Storage in Bigtable è una pipeline che legge i dati dai file Parquet in un bucket Cloud Storage e li scrive in una tabella Bigtable. Puoi utilizzare il modello per copiare i dati da Cloud Storage a Bigtable.

Requisiti della pipeline

  • La tabella Bigtable deve esistere e avere le stesse famiglie di colonne esportate nei file Parquet.
  • I file Parquet di input devono esistere in un bucket Cloud Storage prima di eseguire la pipeline.
  • Bigtable si aspetta uno schema specifico dai file Parquet di input.

Parametri del modello

Parametri obbligatori

  • bigtableProjectId : l'ID progetto Google Cloud associato all'istanza Bigtable.
  • bigtableInstanceId : l'ID dell'istanza Cloud Bigtable che contiene la tabella.
  • bigtableTableId : l'ID della tabella Bigtable da importare.
  • inputFilePattern : il percorso di Cloud Storage con i file contenenti i dati. (esempio: gs://your-bucket/your-files/*.parquet).

Parametri facoltativi

  • splitLargeRows : il flag per attivare la suddivisione di righe di grandi dimensioni in più richieste MutateRows. Tieni presente che quando una riga di grandi dimensioni viene suddivisa tra più chiamate API, gli aggiornamenti della riga non sono atomici. .

Esegui il modello

Console

  1. Vai alla pagina Crea job da modello di Dataflow.
  2. Vai a Crea job da modello
  3. Nel campo Nome job, inserisci un nome univoco per il job.
  4. (Facoltativo) Per Endpoint a livello di regione, seleziona un valore dal menu a discesa. La regione predefinita è us-central1.

    Per un elenco delle regioni in cui puoi eseguire un job Dataflow, consulta Località di Dataflow.

  5. Nel menu a discesa Modello di flusso di dati, seleziona the Parquet Files on Cloud Storage to Cloud Bigtable template.
  6. Nei campi dei parametri forniti, inserisci i valori dei parametri.
  7. Fai clic su Esegui job.

gcloud

Nella shell o nel terminale, esegui il modello:

gcloud dataflow jobs run JOB_NAME \
    --gcs-location gs://dataflow-templates-REGION_NAME/VERSION/GCS_Parquet_to_Cloud_Bigtable \
    --region REGION_NAME \
    --parameters \
bigtableProjectId=BIGTABLE_PROJECT_ID,\
bigtableInstanceId=INSTANCE_ID,\
bigtableTableId=TABLE_ID,\
inputFilePattern=INPUT_FILE_PATTERN

Sostituisci quanto segue:

  • JOB_NAME: un nome di job univoco a tua scelta
  • VERSION: la versione del modello che vuoi utilizzare

    Puoi utilizzare i seguenti valori:

  • REGION_NAME: la regione in cui vuoi eseguire il deployment del job Dataflow, ad esempio us-central1
  • BIGTABLE_PROJECT_ID: l'ID del progetto Google Cloud dell'istanza Bigtable da cui vuoi leggere i dati
  • INSTANCE_ID: l'ID dell'istanza Bigtable che contiene la tabella
  • TABLE_ID: l'ID della tabella Bigtable da esportare
  • INPUT_FILE_PATTERN: il pattern del percorso di Cloud Storage in cui si trovano i dati, ad esempio gs://mybucket/somefolder/prefix*

API

Per eseguire il modello utilizzando l'API REST, invia una richiesta POST HTTP. Per ulteriori informazioni sull'API e sui relativi ambiti di autorizzazione, consulta projects.templates.launch.

POST https://dataflow.googleapis.com/v1b3/projects/PROJECT_ID/locations/LOCATION/templates:launch?gcsPath=gs://dataflow-templates-LOCATION/VERSION/GCS_Parquet_to_Cloud_Bigtable
{
   "jobName": "JOB_NAME",
   "parameters": {
       "bigtableProjectId": "BIGTABLE_PROJECT_ID",
       "bigtableInstanceId": "INSTANCE_ID",
       "bigtableTableId": "TABLE_ID",
       "inputFilePattern": "INPUT_FILE_PATTERN",
   },
   "environment": { "zone": "us-central1-f" }
}

Sostituisci quanto segue:

  • PROJECT_ID: l'ID del progetto Google Cloud in cui vuoi eseguire il job Dataflow
  • JOB_NAME: un nome di job univoco a tua scelta
  • VERSION: la versione del modello che vuoi utilizzare

    Puoi utilizzare i seguenti valori:

  • LOCATION: la regione in cui vuoi eseguire il deployment del job Dataflow, ad esempio us-central1
  • BIGTABLE_PROJECT_ID: l'ID del progetto Google Cloud dell'istanza Bigtable da cui vuoi leggere i dati
  • INSTANCE_ID: l'ID dell'istanza Bigtable che contiene la tabella
  • TABLE_ID: l'ID della tabella Bigtable da esportare
  • INPUT_FILE_PATTERN: il pattern del percorso di Cloud Storage in cui si trovano i dati, ad esempio gs://mybucket/somefolder/prefix*

Passaggi successivi