Plantilla de MongoDB a BigQuery (transmisión)

Esta plantilla crea una canalización de transmisión que funciona con las transmisiones de cambio de MongoDB. Para usar esta plantilla, publica los datos de flujos de cambios en Pub/Sub. Luego, la canalización lee los registros JSON de Pub/Sub y los escribe en BigQuery. Los registros escritos en BigQuery tienen el mismo formato que la plantilla por lotes de MongoDB a BigQuery.

Requisitos de la canalización

  • El conjunto de datos de destino de BigQuery debe existir.
  • Se debe poder acceder a la instancia de origen de MongoDB desde las máquinas de trabajador de Dataflow.
  • Debes crear un tema de Pub/Sub para leer el flujo de cambios. Mientras se ejecuta la canalización, detecta eventos de captura de datos modificados (CDC) en el flujo de cambios de MongoDB y publícalos en Pub/Sub como registros JSON. Para obtener más información sobre la publicación de mensajes en Pub/Sub, consulta Publica mensajes en temas.
  • Esta plantilla usa los flujos de cambios de MongoDB. No es compatible con la captura de datos modificados de BigQuery.

Parámetros de la plantilla

Parámetros obligatorios

  • mongoDbUri: Es el URI de conexión de MongoDB con el formato mongodb+srv://:@..
  • database: La base de datos en MongoDB en la que se debe leer la colección. (Ejemplo: my-db).
  • collection: Nombre de la colección dentro de la base de datos de MongoDB. (Ejemplo: my-collection).
  • userOption : FLATTEN, JSON o NONE. FLATTEN aplana los documentos al nivel único. JSON almacena el documento en formato JSON de BigQuery. NONE almacena todo el documento como una cadena con formato JSON. La configuración predeterminada es NONE.
  • inputTopic: El tema de entrada Pub/Sub desde el que se va a leer, en el formato projects/<PROJECT_ID>/topics/<TOPIC_NAME>.
  • outputTableSpec: La tabla de BigQuery en la que se escribirá. Por ejemplo, bigquery-project:dataset.output_table

Parámetros opcionales

  • useStorageWriteApiAtLeastOnce: Cuando usas la API de Storage Write, se especifica la semántica de escritura. Para usar una semántica de al menos una vez (https://beam.apache.org/documentation/io/built-in/google-bigquery/#at-least-once-semantics), configura el parámetro en true. Para usar una semántica de una y solo una vez, configura el parámetro en false. Este parámetro se aplica solo cuando useStorageWriteApi es true. El valor predeterminado es false.
  • KMSEncryptionKey: Clave de encriptación de Cloud KMS para desencriptar la string de conexión del URI de MongoDB. Si se pasa la clave de Cloud KMS, la string de conexión de URI de MongoDB debe pasarse encriptada. (Ejemplo: projects/your-project/locations/global/keyRings/your-keyring/cryptoKeys/your-key).
  • filter : Filtro Bson en formato JSON. (por ejemplo, { "val": { $gt: 0, $lt: 9 }}).
  • useStorageWriteApi : si es verdadero, la canalización usa la API de BigQuery Storage Write (https://cloud.google.com/bigquery/docs/write-api). El valor predeterminado es false. Para obtener más información, consulta Usa la API de Storage Write (https://beam.apache.org/documentation/io/built-in/google-bigquery/#storage-write-api).
  • numStorageWriteApiStreams: cuando usas la API de Storage Write, se especifica la cantidad de transmisiones de escritura. Si useStorageWriteApi es true y useStorageWriteApiAtLeastOnce es false, debes configurar este parámetro. La configuración predeterminada es 0.
  • storageWriteApiTriggeringFrequencySec: cuando se usa la API de Storage Write, se especifica la frecuencia de activación en segundos. Si useStorageWriteApi es true y useStorageWriteApiAtLeastOnce es false, debes configurar este parámetro.
  • bigQuerySchemaPath: La ruta de Cloud Storage para el esquema JSON de BigQuery. (Ejemplo: gs://your-bucket/your-schema.json).
  • javascriptDocumentTransformGcsPath: El URI de Cloud Storage del archivo .js que define la función definida por el usuario (UDF) de JavaScript que se usará. (Por ejemplo: gs://your-bucket/your-transforms/*.js).
  • javascriptDocumentTransformFunctionName: El nombre de la función definida por el usuario (UDF) de JavaScript que se usará. Por ejemplo, si el código de tu función de JavaScript es myTransform(inJson) { /*...do stuff...*/ }, el nombre de la función es myTransform. Para ver ejemplos de UDF de JavaScript, consulta Ejemplos de UDF (https://github.com/GoogleCloudPlatform/DataflowTemplates#udf-examples). (Ejemplo: transform).

Función definida por el usuario

Para extender esta plantilla, puedes escribir una función definida por el usuario (UDF) en JavaScript. La plantilla llama a la UDF para cada elemento de entrada. Las cargas útiles de elementos se serializan como cadenas JSON.

Para usar una UDF, sube el archivo JavaScript a Cloud Storage y establece los siguientes parámetros de plantilla:

ParámetroDescripción
javascriptDocumentTransformGcsPath Ubicación de Cloud Storage del archivo JavaScript.
javascriptDocumentTransformFunctionName Es el nombre de la función de JavaScript.

Para obtener más información, consulta Crea funciones definidas por el usuario para plantillas de Dataflow.

Especificación de la función

La UDF tiene la siguiente especificación:

  • Entrada: un documento de MongoDB.
  • Resultado: Un objeto serializado como una cadena JSON.
  • Ejecuta la plantilla

    Console

    1. Ve a la página Crear un trabajo a partir de una plantilla de Dataflow.
    2. Ir a Crear un trabajo a partir de una plantilla
    3. En el campo Nombre del trabajo, ingresa un nombre de trabajo único.
    4. Opcional: Para Extremo regional, selecciona un valor del menú desplegable. La región predeterminada es us-central1.

      Para obtener una lista de regiones en las que puedes ejecutar un trabajo de Dataflow, consulta Ubicaciones de Dataflow.

    5. En el menú desplegable Plantilla de Dataflow, selecciona the MongoDB (CDC) to BigQuery template.
    6. En los campos de parámetros proporcionados, ingresa los valores de tus parámetros.
    7. Haga clic en Ejecutar trabajo.

    gcloud

    En tu shell o terminal, ejecuta la plantilla:

    gcloud dataflow flex-template run JOB_NAME \
        --project=PROJECT_ID \
        --region=REGION_NAME \
        --template-file-gcs-location=gs://dataflow-templates-REGION_NAME/VERSION/flex/MongoDB_to_BigQuery_CDC \
        --parameters \
    outputTableSpec=OUTPUT_TABLE_SPEC,\
    mongoDbUri=MONGO_DB_URI,\
    database=DATABASE,\
    collection=COLLECTION,\
    userOption=USER_OPTION,\
    inputTopic=INPUT_TOPIC

    Reemplaza lo siguiente:

    • PROJECT_ID: El ID del proyecto de Google Cloud en el que deseas ejecutar el trabajo de Dataflow.
    • JOB_NAME: Es el nombre del trabajo que elijas
    • REGION_NAME: La región en la que deseas implementar tu trabajo de Dataflow, por ejemplo, us-central1
    • VERSION: Es la versión de la plantilla que deseas usar.

      Puedes usar los siguientes valores:

      • latest para usar la última versión de la plantilla, que está disponible en la carpeta superior non-dated en el bucket gs://dataflow-templates-REGION_NAME/latest/
      • el nombre de la versión, como 2023-09-12-00_RC00, para usar una versión específica de la plantilla, que se puede encontrar anidada en la carpeta superior con fecha correspondiente en el bucket gs://dataflow-templates-REGION_NAME/
    • OUTPUT_TABLE_SPEC: Es el nombre de la tabla de BigQuery de destino.
    • MONGO_DB_URI: Es el URI de MongoDB.
    • DATABASE: Es tu base de datos de MongoDB.
    • COLLECTION: Es tu colección de MongoDB.
    • USER_OPTION: FLATTEN, JSON o NONE.
    • INPUT_TOPIC: Es el tema de entrada de Pub/Sub.

    API

    Para ejecutar la plantilla con la API de REST, envía una solicitud POST HTTP. Para obtener más información de la API y sus permisos de autorización, consulta projects.templates.launch.

    POST https://dataflow.googleapis.com/v1b3/projects/PROJECT_ID/locations/LOCATION/flexTemplates:launch
    {
       "launch_parameter": {
          "jobName": "JOB_NAME",
          "parameters": {
              "inputTableSpec": "INPUT_TABLE_SPEC",
              "mongoDbUri": "MONGO_DB_URI",
              "database": "DATABASE",
              "collection": "COLLECTION",
              "userOption": "USER_OPTION",
              "inputTopic": "INPUT_TOPIC"
          },
          "containerSpecGcsPath": "gs://dataflow-templates-LOCATION/VERSION/flex/MongoDB_to_BigQuery_CDC",
       }
    }

    Reemplaza lo siguiente:

    • PROJECT_ID: El ID del proyecto de Google Cloud en el que deseas ejecutar el trabajo de Dataflow.
    • JOB_NAME: Es el nombre del trabajo que elijas
    • LOCATION: La región en la que deseas implementar tu trabajo de Dataflow, por ejemplo, us-central1
    • VERSION: Es la versión de la plantilla que deseas usar.

      Puedes usar los siguientes valores:

      • latest para usar la última versión de la plantilla, que está disponible en la carpeta superior non-dated en el bucket gs://dataflow-templates-REGION_NAME/latest/
      • el nombre de la versión, como 2023-09-12-00_RC00, para usar una versión específica de la plantilla, que se puede encontrar anidada en la carpeta superior con fecha correspondiente en el bucket gs://dataflow-templates-REGION_NAME/
    • OUTPUT_TABLE_SPEC: Es el nombre de la tabla de BigQuery de destino.
    • MONGO_DB_URI: Es el URI de MongoDB.
    • DATABASE: Es tu base de datos de MongoDB.
    • COLLECTION: Es tu colección de MongoDB.
    • USER_OPTION: FLATTEN, JSON o NONE.
    • INPUT_TOPIC: Es el tema de entrada de Pub/Sub.

    ¿Qué sigue?