Vorlage „Datastore für Cloud Storage Text“ [verworfen]

Diese Vorlage wurde verworfen und wird in Q3 2023 entfernt. Bitte migrieren Sie die Vorlage Firestore zu Cloud Storage Text.

Die Vorlage "Datastore für Cloud Storage Text" ist eine Batchpipeline, die Datastore-Entitäten liest und als Textdateien in Cloud Storage schreibt. Sie können eine Funktion zum Verarbeiten aller Entitäten als JSON-Strings bereitstellen. Wenn Sie keine derartige Funktion bereitstellen, ist jede Zeile in der Ausgabedatei eine JSON-serialisierte Entität.

Pipelineanforderungen

Datastore muss im Projekt eingerichtet werden, bevor Sie die Pipeline ausführen.

Vorlagenparameter

Erforderliche Parameter

  • datastoreReadGqlQuery: Eine GQL-Abfrage (https://cloud.google.com/datastore/docs/reference/gql_reference), die angibt, welche Entitäten abgerufen werden sollen. Beispiel: SELECT * FROM MyKind
  • datastoreReadProjectId: Die ID des Google Cloud-Projekts, das die Datastore-Instanz enthält, aus der Sie Daten lesen möchten.
  • textWritePrefix: Das Cloud Storage-Pfadpräfix, das angibt, wohin die Daten geschrieben werden. Beispiel: gs://mybucket/somefolder/.

Optionale Parameter

  • datastoreReadNamespace: Der Namespace der angeforderten Entitäten. Lassen Sie diesen Parameter leer, um den Standard-Namespace zu verwenden.
  • javascriptTextTransformGcsPath: Der Cloud Storage-URI der .js-Datei, in der die zu verwendende benutzerdefinierte JavaScript-Funktion (UDF) definiert wird. Beispiel: gs://my-bucket/my-udfs/my_file.js.
  • javascriptTextTransformFunctionName: Der Name der benutzerdefinierten JavaScript-Funktion (UDF), die verwendet werden soll. Wenn Ihre JavaScript-Funktion beispielsweise myTransform(inJson) { /*...do stuff...*/ } ist, lautet der Funktionsname myTransform. Beispiele für JavaScript-UDFs finden Sie unter „UDF-Beispiele“ (https://github.com/GoogleCloudPlatform/DataflowTemplates#udf-examples).

Führen Sie die Vorlage aus.

Console

  1. Rufen Sie die Dataflow-Seite Job aus Vorlage erstellen auf.
  2. Zur Seite "Job aus Vorlage erstellen“
  3. Geben Sie im Feld Jobname einen eindeutigen Jobnamen ein.
  4. Optional: Wählen Sie für Regionaler Endpunkt einen Wert aus dem Drop-down-Menü aus. Die Standardregion ist us-central1.

    Eine Liste der Regionen, in denen Sie einen Dataflow-Job ausführen können, finden Sie unter Dataflow-Standorte.

  5. Wählen Sie im Drop-down-Menü Dataflow-Vorlage die Option the Datastore to Text Files on Cloud Storage templateaus.
  6. Geben Sie Ihre Parameterwerte in die Parameterfelder ein.
  7. Klicken Sie auf Job ausführen.

gcloud

Führen Sie die Vorlage in der Shell oder im Terminal aus:

gcloud dataflow jobs run JOB_NAME \
    --gcs-location gs://dataflow-templates-REGION_NAME/VERSION/Datastore_to_GCS_Text \
    --region REGION_NAME \
    --parameters \
datastoreReadGqlQuery="SELECT * FROM DATASTORE_KIND",\
datastoreReadProjectId=DATASTORE_PROJECT_ID,\
datastoreReadNamespace=DATASTORE_NAMESPACE,\
javascriptTextTransformGcsPath=PATH_TO_JAVASCRIPT_UDF_FILE,\
javascriptTextTransformFunctionName=JAVASCRIPT_FUNCTION,\
textWritePrefix=gs://BUCKET_NAME/output/

Ersetzen Sie Folgendes:

  • JOB_NAME: ein eindeutiger Jobname Ihrer Wahl
  • REGION_NAME: die Region, in der Sie Ihren Dataflow-Job bereitstellen möchten, z. B. us-central1
  • VERSION: Die Version der Vorlage, die Sie verwenden möchten

    Sie können die folgenden Werte verwenden:

    • latest zur Verwendung der neuesten Version der Vorlage, die im nicht datierten übergeordneten Ordner im Bucket verfügbar ist: gs://dataflow-templates-REGION_NAME/latest/
    • Den Versionsnamen wie 2023-09-12-00_RC00, um eine bestimmte Version der Vorlage zu verwenden. Diese ist verschachtelt im jeweiligen datierten übergeordneten Ordner im Bucket enthalten: gs://dataflow-templates-REGION_NAME/.
  • BUCKET_NAME: der Name Ihres Cloud Storage-Buckets
  • DATASTORE_PROJECT_ID: die Google Cloud -Projekt-ID, in der sich die Datastore-Instanz befindet
  • DATASTORE_KIND: der Typ Ihrer Datastore-Entitäten
  • DATASTORE_NAMESPACE: der Namespace Ihrer Datastore-Entitäten
  • JAVASCRIPT_FUNCTION: ist der Name der benutzerdefinierten JavaScript-Funktion (UDF), die Sie verwenden möchten.

    Wenn Ihre JavaScript-Funktion beispielsweise myTransform(inJson) { /*...do stuff...*/ } ist, lautet der Funktionsname myTransform. Beispiele für JavaScript-UDFs finden Sie unter UDF-Beispiele.

  • PATH_TO_JAVASCRIPT_UDF_FILE Der Cloud Storage-URI der Datei .js, in der die benutzerdefinierte JavaScript-Funktion (UDF) definiert wird, die Sie verwenden möchten. Beispiel: gs://my-bucket/my-udfs/my_file.js

API

Senden Sie eine HTTP-POST-Anfrage, um die Vorlage mithilfe der REST API auszuführen. Weitere Informationen zur API und ihren Autorisierungsbereichen finden Sie unter projects.templates.launch.

POST https://dataflow.googleapis.com/v1b3/projects/PROJECT_ID/locations/LOCATION/templates:launch?gcsPath=gs://dataflow-templates-LOCATION/VERSION/Datastore_to_GCS_Text
{
   "jobName": "JOB_NAME",
   "parameters": {
       "datastoreReadGqlQuery": "SELECT * FROM DATASTORE_KIND"
       "datastoreReadProjectId": "DATASTORE_PROJECT_ID",
       "datastoreReadNamespace": "DATASTORE_NAMESPACE",
       "javascriptTextTransformGcsPath": "PATH_TO_JAVASCRIPT_UDF_FILE",
       "javascriptTextTransformFunctionName": "JAVASCRIPT_FUNCTION",
       "textWritePrefix": "gs://BUCKET_NAME/output/"
   },
   "environment": { "zone": "us-central1-f" }
}

Ersetzen Sie Folgendes:

  • PROJECT_ID: die Google Cloud -Projekt-ID, in der Sie den Dataflow-Job ausführen möchten
  • JOB_NAME: ein eindeutiger Jobname Ihrer Wahl
  • LOCATION: die Region, in der Sie Ihren Dataflow-Job bereitstellen möchten, z. B. us-central1
  • VERSION: Die Version der Vorlage, die Sie verwenden möchten

    Sie können die folgenden Werte verwenden:

    • latest zur Verwendung der neuesten Version der Vorlage, die im nicht datierten übergeordneten Ordner im Bucket verfügbar ist: gs://dataflow-templates-REGION_NAME/latest/
    • Den Versionsnamen wie 2023-09-12-00_RC00, um eine bestimmte Version der Vorlage zu verwenden. Diese ist verschachtelt im jeweiligen datierten übergeordneten Ordner im Bucket enthalten: gs://dataflow-templates-REGION_NAME/.
  • BUCKET_NAME: der Name Ihres Cloud Storage-Buckets
  • DATASTORE_PROJECT_ID: die Google Cloud -Projekt-ID, in der sich die Datastore-Instanz befindet
  • DATASTORE_KIND: der Typ Ihrer Datastore-Entitäten
  • DATASTORE_NAMESPACE: der Namespace Ihrer Datastore-Entitäten
  • JAVASCRIPT_FUNCTION: ist der Name der benutzerdefinierten JavaScript-Funktion (UDF), die Sie verwenden möchten.

    Wenn Ihre JavaScript-Funktion beispielsweise myTransform(inJson) { /*...do stuff...*/ } ist, lautet der Funktionsname myTransform. Beispiele für JavaScript-UDFs finden Sie unter UDF-Beispiele.

  • PATH_TO_JAVASCRIPT_UDF_FILE Der Cloud Storage-URI der Datei .js, in der die benutzerdefinierte JavaScript-Funktion (UDF) definiert wird, die Sie verwenden möchten. Beispiel: gs://my-bucket/my-udfs/my_file.js

Nächste Schritte