Stay organized with collections
Save and categorize content based on your preferences.
The Spanner to Cloud Storage Text template is a batch pipeline that reads in data from a Spanner
table, and writes it to Cloud Storage as CSV text files.
Pipeline requirements
The input Spanner table must exist before running the pipeline.
Template parameters
Required parameters
spannerTable : The Spanner table to read the data from.
spannerProjectId : The ID of the Google Cloud project that contains the Spanner database to read data from.
spannerInstanceId : The instance ID of the requested table.
spannerDatabaseId : The database ID of the requested table.
textWritePrefix : The Cloud Storage path prefix that specifies where the data is written. (Example: gs://mybucket/somefolder/).
Optional parameters
csvTempDirectory : The Cloud Storage path where temporary CSV files are written. (Example: gs://your-bucket/your-path).
dataBoostEnabled : Set to true to use the compute resources of Spanner Data Boost to run the job with near-zero impact on Spanner OLTP workflows. When true, requires the spanner.databases.useDataBoost Identity and Access Management (IAM) permission. For more information, see Data Boost overview (https://cloud.google.com/spanner/docs/databoost/databoost-overview). Defaults to: false.
the version name, like 2023-09-12-00_RC00, to use a specific version of the
template, which can be found nested in the respective dated parent folder in the bucket—
gs://dataflow-templates-REGION_NAME/
REGION_NAME:
the region where you want to
deploy your Dataflow job—for example, us-central1
SPANNER_PROJECT_ID: the Google Cloud project ID of the
Spanner database from which you want to read data
DATABASE_ID: the Spanner database ID
BUCKET_NAME: the name of your Cloud Storage
bucket
INSTANCE_ID: the Spanner instance ID
TABLE_ID: the Spanner table ID
API
To run the template using the REST API, send an HTTP POST request. For more information on the
API and its authorization scopes, see
projects.templates.launch.
the version name, like 2023-09-12-00_RC00, to use a specific version of the
template, which can be found nested in the respective dated parent folder in the bucket—
gs://dataflow-templates-REGION_NAME/
LOCATION:
the region where you want to
deploy your Dataflow job—for example, us-central1
SPANNER_PROJECT_ID: the Google Cloud project ID of the
Spanner database from which you want to read data
DATABASE_ID: the Spanner database ID
BUCKET_NAME: the name of your Cloud Storage
bucket
INSTANCE_ID: the Spanner instance ID
TABLE_ID: the Spanner table ID
Template source code
Java
/*
* Copyright (C) 2018 Google LLC
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may not
* use this file except in compliance with the License. You may obtain a copy of
* the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations under
* the License.
*/
package com.google.cloud.teleport.templates;
import static com.google.cloud.teleport.util.ValueProviderUtils.eitherOrValueProvider;
import com.google.cloud.spanner.Options.RpcPriority;
import com.google.cloud.teleport.metadata.Template;
import com.google.cloud.teleport.metadata.TemplateCategory;
import com.google.cloud.teleport.metadata.TemplateParameter;
import com.google.cloud.teleport.metadata.TemplateParameter.TemplateEnumOption;
import com.google.cloud.teleport.templates.SpannerToText.SpannerToTextOptions;
import com.google.cloud.teleport.templates.common.SpannerConverters;
import com.google.cloud.teleport.templates.common.SpannerConverters.CreateTransactionFnWithTimestamp;
import com.google.cloud.teleport.templates.common.SpannerConverters.SpannerReadOptions;
import com.google.cloud.teleport.templates.common.TextConverters.FilesystemWriteOptions;
import org.apache.beam.sdk.Pipeline;
import org.apache.beam.sdk.io.FileSystems;
import org.apache.beam.sdk.io.TextIO;
import org.apache.beam.sdk.io.fs.ResourceId;
import org.apache.beam.sdk.io.gcp.spanner.LocalSpannerIO;
import org.apache.beam.sdk.io.gcp.spanner.ReadOperation;
import org.apache.beam.sdk.io.gcp.spanner.SpannerConfig;
import org.apache.beam.sdk.io.gcp.spanner.Transaction;
import org.apache.beam.sdk.options.PipelineOptions;
import org.apache.beam.sdk.options.PipelineOptionsFactory;
import org.apache.beam.sdk.options.ValueProvider;
import org.apache.beam.sdk.transforms.Create;
import org.apache.beam.sdk.transforms.MapElements;
import org.apache.beam.sdk.transforms.PTransform;
import org.apache.beam.sdk.transforms.ParDo;
import org.apache.beam.sdk.transforms.SerializableFunction;
import org.apache.beam.sdk.transforms.View;
import org.apache.beam.sdk.values.PBegin;
import org.apache.beam.sdk.values.PCollection;
import org.apache.beam.sdk.values.PCollectionView;
import org.apache.beam.sdk.values.TypeDescriptors;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
/**
* Dataflow template which copies a Spanner table to a Text sink. It exports a Spanner table using
* <a href="https://cloud.google.com/spanner/docs/reads#read_data_in_parallel">Batch API</a>, which
* creates multiple workers in parallel for better performance. The result is written to a CSV file
* in Google Cloud Storage. The table schema file is saved in json format along with the exported
* table.
*
* <p>Schema file sample: { "id":"INT64", "name":"STRING(MAX)" }
*
* <p>Check out <a
* href="https://github.com/GoogleCloudPlatform/DataflowTemplates/blob/main/v1/README_Spanner_to_GCS_Text.md">README</a>
* for instructions on how to use or modify this template.
*/
@Template(
name = "Spanner_to_GCS_Text",
category = TemplateCategory.BATCH,
displayName = "Cloud Spanner to Text Files on Cloud Storage",
description =
"The Cloud Spanner to Cloud Storage Text template is a batch pipeline that reads in data from a Cloud Spanner "
+ "table, and writes it to Cloud Storage as CSV text files.",
optionsClass = SpannerToTextOptions.class,
documentation =
"https://cloud.google.com/dataflow/docs/guides/templates/provided/cloud-spanner-to-cloud-storage",
contactInformation = "https://cloud.google.com/support",
requirements = {"The input Spanner table must exist before running the pipeline."})
public class SpannerToText {
private static final Logger LOG = LoggerFactory.getLogger(SpannerToText.class);
/** Custom PipelineOptions. */
public interface SpannerToTextOptions
extends PipelineOptions, SpannerReadOptions, FilesystemWriteOptions {
@TemplateParameter.GcsWriteFolder(
order = 1,
groupName = "Target",
optional = true,
description = "Cloud Storage temp directory for storing CSV files",
helpText = "The Cloud Storage path where temporary CSV files are written.",
example = "gs://your-bucket/your-path")
ValueProvider<String> getCsvTempDirectory();
@SuppressWarnings("unused")
void setCsvTempDirectory(ValueProvider<String> value);
@TemplateParameter.Enum(
order = 2,
groupName = "Source",
enumOptions = {
@TemplateEnumOption("LOW"),
@TemplateEnumOption("MEDIUM"),
@TemplateEnumOption("HIGH")
},
optional = true,
description = "Priority for Spanner RPC invocations",
helpText =
"The request priority (https://cloud.google.com/spanner/docs/reference/rest/v1/RequestOptions)"
+ " for Spanner calls. Possible values are `HIGH`, `MEDIUM`, `LOW`. The default value is `MEDIUM`.")
ValueProvider<RpcPriority> getSpannerPriority();
void setSpannerPriority(ValueProvider<RpcPriority> value);
}
/**
* Runs a pipeline which reads in Records from Spanner, and writes the CSV to TextIO sink.
*
* @param args arguments to the pipeline
*/
public static void main(String[] args) {
LOG.info("Starting pipeline setup");
PipelineOptionsFactory.register(SpannerToTextOptions.class);
SpannerToTextOptions options =
PipelineOptionsFactory.fromArgs(args).withValidation().as(SpannerToTextOptions.class);
FileSystems.setDefaultPipelineOptions(options);
Pipeline pipeline = Pipeline.create(options);
SpannerConfig spannerConfig =
SpannerConfig.create()
.withHost(options.getSpannerHost())
.withProjectId(options.getSpannerProjectId())
.withInstanceId(options.getSpannerInstanceId())
.withDatabaseId(options.getSpannerDatabaseId())
.withRpcPriority(options.getSpannerPriority())
.withDataBoostEnabled(options.getDataBoostEnabled());
PTransform<PBegin, PCollection<ReadOperation>> spannerExport =
SpannerConverters.ExportTransformFactory.create(
options.getSpannerTable(),
spannerConfig,
options.getTextWritePrefix(),
options.getSpannerSnapshotTime());
/* CreateTransaction and CreateTransactionFn classes in LocalSpannerIO
* only take a timestamp object for exact staleness which works when
* parameters are provided during template compile time. They do not work with
* a Timestamp valueProvider which can take parameters at runtime. Hence a new
* ParDo class CreateTransactionFnWithTimestamp had to be created for this
* purpose.
*/
PCollectionView<Transaction> tx =
pipeline
.apply("Setup for Transaction", Create.of(1))
.apply(
"Create transaction",
ParDo.of(
new CreateTransactionFnWithTimestamp(
spannerConfig, options.getSpannerSnapshotTime())))
.apply("As PCollectionView", View.asSingleton());
PCollection<String> csv =
pipeline
.apply("Create export", spannerExport)
// We need to use LocalSpannerIO.readAll() instead of LocalSpannerIO.read()
// because ValueProvider parameters such as table name required for
// LocalSpannerIO.read() can be read only inside DoFn but LocalSpannerIO.read() is of
// type PTransform<PBegin, Struct>, which prevents prepending it with DoFn that reads
// these parameters at the pipeline execution time.
.apply(
"Read all records",
LocalSpannerIO.readAll().withTransaction(tx).withSpannerConfig(spannerConfig))
.apply(
"Struct To Csv",
MapElements.into(TypeDescriptors.strings())
.via(struct -> (new SpannerConverters.StructCsvPrinter()).print(struct)));
ValueProvider<ResourceId> tempDirectoryResource =
ValueProvider.NestedValueProvider.of(
eitherOrValueProvider(options.getCsvTempDirectory(), options.getTextWritePrefix()),
(SerializableFunction<String, ResourceId>) s -> FileSystems.matchNewResource(s, true));
csv.apply(
"Write to storage",
TextIO.write()
.to(options.getTextWritePrefix())
.withSuffix(".csv")
.withTempDirectory(tempDirectoryResource));
pipeline.run();
LOG.info("Completed pipeline setup");
}
}
[[["Easy to understand","easyToUnderstand","thumb-up"],["Solved my problem","solvedMyProblem","thumb-up"],["Other","otherUp","thumb-up"]],[["Hard to understand","hardToUnderstand","thumb-down"],["Incorrect information or sample code","incorrectInformationOrSampleCode","thumb-down"],["Missing the information/samples I need","missingTheInformationSamplesINeed","thumb-down"],["Other","otherDown","thumb-down"]],["Last updated 2024-10-30 UTC."],[],[]]