The Spanner to Cloud Storage Text template is a batch pipeline that reads in data from a Spanner table, and writes it to Cloud Storage as CSV text files.
Pipeline requirements
- The input Spanner table must exist before running the pipeline.
Template parameters
Required parameters
- spannerTable: The Spanner table to read the data from.
- spannerProjectId: The ID of the Google Cloud project that contains the Spanner database to read data from.
- spannerInstanceId: The instance ID of the requested table.
- spannerDatabaseId: The database ID of the requested table.
- textWritePrefix: The Cloud Storage path prefix that specifies where the data is written. For example,
gs://mybucket/somefolder/
.
Optional parameters
- csvTempDirectory: The Cloud Storage path where temporary CSV files are written. For example,
gs://your-bucket/your-path
. - spannerPriority: The request priority (https://cloud.google.com/spanner/docs/reference/rest/v1/RequestOptions) for Spanner calls. Possible values are
HIGH
,MEDIUM
,LOW
. The default value isMEDIUM
. - spannerHost: The Cloud Spanner endpoint to call in the template. Only used for testing. For example,
https://batch-spanner.googleapis.com
. Defaults to: https://batch-spanner.googleapis.com. - spannerSnapshotTime: The timestamp that corresponds to the version of the Spanner database that you want to read from. The timestamp must be specified in the RFC 3339 (https://tools.ietf.org/html/rfc3339) UTC Zulu Time format. The timestamp must be in the past and maximum timestamp staleness (https://cloud.google.com/spanner/docs/timestamp-bounds#maximum_timestamp_staleness) applies. For example,
1990-12-31T23:59:60Z
. Defaults to empty. - dataBoostEnabled: Set to
true
to use the compute resources of Spanner Data Boost to run the job with near-zero impact on Spanner OLTP workflows. When true, requires thespanner.databases.useDataBoost
Identity and Access Management (IAM) permission. For more information, see Data Boost overview (https://cloud.google.com/spanner/docs/databoost/databoost-overview). Defaults to: false.
Run the template
Console
- Go to the Dataflow Create job from template page. Go to Create job from template
- In the Job name field, enter a unique job name.
- Optional: For Regional endpoint, select a value from the drop-down menu. The default
region is
us-central1
.For a list of regions where you can run a Dataflow job, see Dataflow locations.
- From the Dataflow template drop-down menu, select the Cloud Spanner to Text Files on Cloud Storage template.
- In the provided parameter fields, enter your parameter values.
- Click Run job.
gcloud
In your shell or terminal, run the template:
gcloud dataflow jobs run JOB_NAME \ --gcs-location gs://dataflow-templates-REGION_NAME/VERSION/Spanner_to_GCS_Text \ --region REGION_NAME \ --parameters \ spannerProjectId=SPANNER_PROJECT_ID,\ spannerDatabaseId=DATABASE_ID,\ spannerInstanceId=INSTANCE_ID,\ spannerTable=TABLE_ID,\ textWritePrefix=gs://BUCKET_NAME/output/
Replace the following:
JOB_NAME
: a unique job name of your choiceVERSION
: the version of the template that you want to useYou can use the following values:
latest
to use the latest version of the template, which is available in the non-dated parent folder in the bucket— gs://dataflow-templates-REGION_NAME/latest/- the version name, like
2023-09-12-00_RC00
, to use a specific version of the template, which can be found nested in the respective dated parent folder in the bucket— gs://dataflow-templates-REGION_NAME/
REGION_NAME
: the region where you want to deploy your Dataflow job—for example,us-central1
SPANNER_PROJECT_ID
: the Google Cloud project ID of the Spanner database from which you want to read dataDATABASE_ID
: the Spanner database IDBUCKET_NAME
: the name of your Cloud Storage bucketINSTANCE_ID
: the Spanner instance IDTABLE_ID
: the Spanner table ID
API
To run the template using the REST API, send an HTTP POST request. For more information on the
API and its authorization scopes, see
projects.templates.launch
.
POST https://dataflow.googleapis.com/v1b3/projects/PROJECT_ID/locations/LOCATION/templates:launch?gcsPath=gs://dataflow-templates-LOCATION/VERSION/Spanner_to_GCS_Text { "jobName": "JOB_NAME", "parameters": { "spannerProjectId": "SPANNER_PROJECT_ID", "spannerDatabaseId": "DATABASE_ID", "spannerInstanceId": "INSTANCE_ID", "spannerTable": "TABLE_ID", "textWritePrefix": "gs://BUCKET_NAME/output/" }, "environment": { "zone": "us-central1-f" } }
Replace the following:
PROJECT_ID
: the Google Cloud project ID where you want to run the Dataflow jobJOB_NAME
: a unique job name of your choiceVERSION
: the version of the template that you want to useYou can use the following values:
latest
to use the latest version of the template, which is available in the non-dated parent folder in the bucket— gs://dataflow-templates-REGION_NAME/latest/- the version name, like
2023-09-12-00_RC00
, to use a specific version of the template, which can be found nested in the respective dated parent folder in the bucket— gs://dataflow-templates-REGION_NAME/
LOCATION
: the region where you want to deploy your Dataflow job—for example,us-central1
SPANNER_PROJECT_ID
: the Google Cloud project ID of the Spanner database from which you want to read dataDATABASE_ID
: the Spanner database IDBUCKET_NAME
: the name of your Cloud Storage bucketINSTANCE_ID
: the Spanner instance IDTABLE_ID
: the Spanner table ID
What's next
- Learn about Dataflow templates.
- See the list of Google-provided templates.