Spanner to Cloud Storage Text template

The Spanner to Cloud Storage Text template is a batch pipeline that reads in data from a Spanner table, and writes it to Cloud Storage as CSV text files.

Pipeline requirements

  • The input Spanner table must exist before running the pipeline.

Template parameters

Required parameters

  • spannerTable: The Spanner table to read the data from.
  • spannerProjectId: The ID of the Google Cloud project that contains the Spanner database to read data from.
  • spannerInstanceId: The instance ID of the requested table.
  • spannerDatabaseId: The database ID of the requested table.
  • textWritePrefix: The Cloud Storage path prefix that specifies where the data is written. For example, gs://mybucket/somefolder/.

Optional parameters

Run the template

Console

  1. Go to the Dataflow Create job from template page.
  2. Go to Create job from template
  3. In the Job name field, enter a unique job name.
  4. Optional: For Regional endpoint, select a value from the drop-down menu. The default region is us-central1.

    For a list of regions where you can run a Dataflow job, see Dataflow locations.

  5. From the Dataflow template drop-down menu, select the Cloud Spanner to Text Files on Cloud Storage template.
  6. In the provided parameter fields, enter your parameter values.
  7. Click Run job.

gcloud

In your shell or terminal, run the template:

gcloud dataflow jobs run JOB_NAME \
    --gcs-location gs://dataflow-templates-REGION_NAME/VERSION/Spanner_to_GCS_Text \
    --region REGION_NAME \
    --parameters \
spannerProjectId=SPANNER_PROJECT_ID,\
spannerDatabaseId=DATABASE_ID,\
spannerInstanceId=INSTANCE_ID,\
spannerTable=TABLE_ID,\
textWritePrefix=gs://BUCKET_NAME/output/

Replace the following:

  • JOB_NAME: a unique job name of your choice
  • VERSION: the version of the template that you want to use

    You can use the following values:

  • REGION_NAME: the region where you want to deploy your Dataflow job—for example, us-central1
  • SPANNER_PROJECT_ID: the Google Cloud project ID of the Spanner database from which you want to read data
  • DATABASE_ID: the Spanner database ID
  • BUCKET_NAME: the name of your Cloud Storage bucket
  • INSTANCE_ID: the Spanner instance ID
  • TABLE_ID: the Spanner table ID

API

To run the template using the REST API, send an HTTP POST request. For more information on the API and its authorization scopes, see projects.templates.launch.

POST https://dataflow.googleapis.com/v1b3/projects/PROJECT_ID/locations/LOCATION/templates:launch?gcsPath=gs://dataflow-templates-LOCATION/VERSION/Spanner_to_GCS_Text
{
   "jobName": "JOB_NAME",
   "parameters": {
       "spannerProjectId": "SPANNER_PROJECT_ID",
       "spannerDatabaseId": "DATABASE_ID",
       "spannerInstanceId": "INSTANCE_ID",
       "spannerTable": "TABLE_ID",
       "textWritePrefix": "gs://BUCKET_NAME/output/"
   },
   "environment": { "zone": "us-central1-f" }
}

Replace the following:

  • PROJECT_ID: the Google Cloud project ID where you want to run the Dataflow job
  • JOB_NAME: a unique job name of your choice
  • VERSION: the version of the template that you want to use

    You can use the following values:

  • LOCATION: the region where you want to deploy your Dataflow job—for example, us-central1
  • SPANNER_PROJECT_ID: the Google Cloud project ID of the Spanner database from which you want to read data
  • DATABASE_ID: the Spanner database ID
  • BUCKET_NAME: the name of your Cloud Storage bucket
  • INSTANCE_ID: the Spanner instance ID
  • TABLE_ID: the Spanner table ID

What's next