Modello Bigtable to JSON

Il modello Bigtable to JSON è una pipeline che legge i dati da una tabella Bigtable e li scrive in un bucket Cloud Storage in formato JSON.

Requisiti della pipeline

  • La tabella Bigtable deve esistere.
  • Il bucket Cloud Storage di output deve esistere prima di eseguire la pipeline.

Parametri del modello

Parametri obbligatori

  • bigtableProjectId: l'ID del progetto Google Cloud contenente l'istanza Bigtable da cui vuoi leggere i dati.
  • bigtableInstanceId: l'ID dell'istanza Bigtable contenente la tabella.
  • bigtableTableId: l'ID della tabella Bigtable da cui leggere.
  • filenamePrefix: il prefisso del nome del file JSON. Ad esempio, table1-. Se non viene fornito alcun valore, il valore predefinito è part.

Parametri facoltativi

  • outputDirectory: il percorso Cloud Storage in cui sono archiviati i file JSON di output. Ad esempio, gs://your-bucket/your-path/.
  • userOption: i valori possibili sono FLATTEN o NONE. FLATTEN appiattisce la riga al singolo livello. NONE memorizza l'intera riga come stringa JSON. Il valore predefinito è NONE.
  • columnsAliases: un elenco separato da virgole di colonne necessarie per l'indice Vertex AI Vector Search. Le colonne id e embedding sono obbligatorie per Vertex AI Vector Search. Puoi utilizzare la notazione fromfamily:fromcolumn;to. Ad esempio, se le colonne sono rowkey e cf:my_embedding, dove rowkey ha un nome diverso dalla colonna di incorporamento, specifica cf:my_embedding;embedding e rowkey;id. Utilizza questa opzione solo quando il valore di userOption è FLATTEN.
  • bigtableAppProfileId: l'ID del profilo dell'applicazione Bigtable da utilizzare per l'esportazione. Se non specifichi un profilo dell'app, Bigtable utilizza il profilo dell'app predefinito dell'istanza: https://cloud.google.com/bigtable/docs/app-profiles#default-app-profile.

Esegui il modello

Console

  1. Vai alla pagina Crea job da modello di Dataflow.
  2. Vai a Crea job da modello
  3. Nel campo Nome job, inserisci un nome univoco per il job.
  4. (Facoltativo) Per Endpoint a livello di regione, seleziona un valore dal menu a discesa. La regione predefinita è us-central1.

    Per un elenco delle regioni in cui puoi eseguire un job Dataflow, consulta Località di Dataflow.

  5. Nel menu a discesa Modello di flusso di dati, seleziona the Bigtable to JSON template.
  6. Nei campi dei parametri forniti, inserisci i valori dei parametri.
  7. Fai clic su Esegui job.

Interfaccia a riga di comando gcloud

Nella shell o nel terminale, esegui il modello:

gcloud dataflow jobs run JOB_NAME \
    --gcs-location=gs://dataflow-templates-REGION_NAME/VERSION/Cloud_Bigtable_to_GCS_Json \
    --project=PROJECT_ID \
    --region=REGION_NAME \
    --parameters \
       bigtableProjectId=BIGTABLE_PROJECT_ID,\
       bigtableInstanceId=BIGTABLE_INSTANCE_ID,\
       bigtableTableId=BIGTABLE_TABLE_ID,\
       filenamePrefix=FILENAME_PREFIX,\

Sostituisci quanto segue:

  • JOB_NAME: un nome di job univoco a tua scelta
  • VERSION: la versione del modello che vuoi utilizzare

    Puoi utilizzare i seguenti valori:

  • REGION_NAME: la regione in cui vuoi eseguire il deployment del job Dataflow, ad esempio us-central1
  • BIGTABLE_PROJECT_ID: l'ID progetto
  • BIGTABLE_INSTANCE_ID: l'ID istanza
  • BIGTABLE_TABLE_ID: l'ID tabella
  • FILENAME_PREFIX: il prefisso del file JSON

API

Per eseguire il modello utilizzando l'API REST, invia una richiesta POST HTTP. Per ulteriori informazioni sull'API e sui relativi ambiti di autorizzazione, consulta projects.templates.launch.

POST https://dataflow.googleapis.com/v1b3/projects/PROJECT_ID/locations/LOCATION/templates:launch?gcsPath=gs://dataflow-templates-LOCATION/VERSION/Cloud_Bigtable_to_GCS_Json
{
   "jobName": "JOB_NAME",
   "parameters": {
     "bigtableProjectId": "BIGTABLE_PROJECT_ID",
     "bigtableInstanceId": "BIGTABLE_INSTANCE_ID",
     "bigtableTableId": "BIGTABLE_TABLE_ID",
     "filenamePrefix": "FILENAME_PREFIX",
   },
   "environment": { "maxWorkers": "10" }
}

Sostituisci quanto segue:

  • PROJECT_ID: l'ID del progetto Google Cloud in cui vuoi eseguire il job Dataflow
  • JOB_NAME: un nome di job univoco a tua scelta
  • VERSION: la versione del modello che vuoi utilizzare

    Puoi utilizzare i seguenti valori:

  • LOCATION: la regione in cui vuoi eseguire il deployment del job Dataflow, ad esempio us-central1
  • BIGTABLE_PROJECT_ID: l'ID progetto
  • BIGTABLE_INSTANCE_ID: l'ID istanza
  • BIGTABLE_TABLE_ID: l'ID tabella
  • FILENAME_PREFIX: il prefisso del file JSON

Passaggi successivi