Memproses respons Cloud Vision API

Memproses respons Cloud Vision API saat wajah terdeteksi dalam suatu gambar.

Mempelajari lebih lanjut

Untuk dokumentasi mendetail yang menyertakan contoh kode ini, lihat referensi berikut:

Contoh kode

Java

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Java di Panduan memulai Vision menggunakan library klien. Untuk mengetahui informasi selengkapnya, lihat dokumentasi referensi Vision Java API.

Untuk melakukan autentikasi ke Vision, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

/** Reads image {@code inputPath} and writes {@code outputPath} with {@code faces} outlined. */
private static void writeWithFaces(Path inputPath, Path outputPath, List<FaceAnnotation> faces)
    throws IOException {
  BufferedImage img = ImageIO.read(inputPath.toFile());
  annotateWithFaces(img, faces);
  ImageIO.write(img, "jpg", outputPath.toFile());
}

/** Annotates an image {@code img} with a polygon around each face in {@code faces}. */
public static void annotateWithFaces(BufferedImage img, List<FaceAnnotation> faces) {
  for (FaceAnnotation face : faces) {
    annotateWithFace(img, face);
  }
}

/** Annotates an image {@code img} with a polygon defined by {@code face}. */
private static void annotateWithFace(BufferedImage img, FaceAnnotation face) {
  Graphics2D gfx = img.createGraphics();
  Polygon poly = new Polygon();
  for (Vertex vertex : face.getFdBoundingPoly().getVertices()) {
    poly.addPoint(vertex.getX(), vertex.getY());
  }
  gfx.setStroke(new BasicStroke(5));
  gfx.setColor(new Color(0x00ff00));
  gfx.draw(poly);
}

Node.js

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Node.js di Panduan memulai Vision menggunakan library klien. Untuk mengetahui informasi selengkapnya, lihat dokumentasi referensi Vision Node.js API.

Untuk melakukan autentikasi ke Vision, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

async function highlightFaces(inputFile, faces, outputFile, PImage) {
  // Open the original image
  const stream = fs.createReadStream(inputFile);
  let promise;
  if (inputFile.match(/\.jpg$/)) {
    promise = PImage.decodeJPEGFromStream(stream);
  } else if (inputFile.match(/\.png$/)) {
    promise = PImage.decodePNGFromStream(stream);
  } else {
    throw new Error(`Unknown filename extension ${inputFile}`);
  }
  const img = await promise;
  const context = img.getContext('2d');
  context.drawImage(img, 0, 0, img.width, img.height, 0, 0);

  // Now draw boxes around all the faces
  context.strokeStyle = 'rgba(0,255,0,0.8)';
  context.lineWidth = '5';

  faces.forEach(face => {
    context.beginPath();
    let origX = 0;
    let origY = 0;
    face.boundingPoly.vertices.forEach((bounds, i) => {
      if (i === 0) {
        origX = bounds.x;
        origY = bounds.y;
        context.moveTo(bounds.x, bounds.y);
      } else {
        context.lineTo(bounds.x, bounds.y);
      }
    });
    context.lineTo(origX, origY);
    context.stroke();
  });

  // Write the result to a file
  console.log(`Writing to file ${outputFile}`);
  const writeStream = fs.createWriteStream(outputFile);
  await PImage.encodePNGToStream(img, writeStream);
}

PHP

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan PHP di Panduan memulai Vision menggunakan library klien. Untuk mengetahui informasi selengkapnya, lihat dokumentasi referensi Vision PHP API.

Untuk melakukan autentikasi ke Vision, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

# draw box around faces
if ($faces->count() && $outFile) {
    $imageCreateFunc = [
        'png' => 'imagecreatefrompng',
        'gd' => 'imagecreatefromgd',
        'gif' => 'imagecreatefromgif',
        'jpg' => 'imagecreatefromjpeg',
        'jpeg' => 'imagecreatefromjpeg',
    ];
    $imageWriteFunc = [
        'png' => 'imagepng',
        'gd' => 'imagegd',
        'gif' => 'imagegif',
        'jpg' => 'imagejpeg',
        'jpeg' => 'imagejpeg',
    ];

    copy($path, $outFile);
    $ext = strtolower(pathinfo($path, PATHINFO_EXTENSION));
    if (!array_key_exists($ext, $imageCreateFunc)) {
        throw new \Exception('Unsupported image extension');
    }
    $outputImage = call_user_func($imageCreateFunc[$ext], $outFile);

    foreach ($faces as $face) {
        $vertices = $face->getBoundingPoly()->getVertices();
        if ($vertices) {
            $x1 = $vertices[0]->getX();
            $y1 = $vertices[0]->getY();
            $x2 = $vertices[2]->getX();
            $y2 = $vertices[2]->getY();
            imagerectangle($outputImage, $x1, $y1, $x2, $y2, 0x00ff00);
        }
    }

Python

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Python di Panduan memulai Vision menggunakan library klien. Untuk mengetahui informasi selengkapnya, lihat dokumentasi referensi Vision Python API.

Untuk melakukan autentikasi ke Vision, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

def highlight_faces(image, faces, output_filename):
    """Draws a polygon around the faces, then saves to output_filename.

    Args:
      image: a file containing the image with the faces.
      faces: a list of faces found in the file. This should be in the format
          returned by the Vision API.
      output_filename: the name of the image file to be created, where the
          faces have polygons drawn around them.
    """
    im = Image.open(image)
    draw = ImageDraw.Draw(im)
    # Sepecify the font-family and the font-size
    for face in faces:
        box = [(vertex.x, vertex.y) for vertex in face.bounding_poly.vertices]
        draw.line(box + [box[0]], width=5, fill="#00ff00")
        # Place the confidence value/score of the detected faces above the
        # detection box in the output image
        draw.text(
            (
                (face.bounding_poly.vertices)[0].x,
                (face.bounding_poly.vertices)[0].y - 30,
            ),
            str(format(face.detection_confidence, ".3f")) + "%",
            fill="#FF0000",
        )
    im.save(output_filename)

Langkah selanjutnya

Untuk menelusuri dan memfilter contoh kode untuk produk Google Cloud lainnya, lihat browser contoh Google Cloud.