Procesar la respuesta de la API de Cloud Vision

Procesar la respuesta de la API de Cloud Vision cuando se detecten rostros en una imagen

Páginas de documentación que incluyen esta muestra de código

Para ver la muestra de código usada en contexto, consulta la siguiente documentación:

Muestra de código

Java

Antes de probar este código de muestra, sigue las instrucciones de configuración para Java que se encuentran en la Guía de inicio rápido de Vision sobre cómo usar las bibliotecas cliente. Si quieres obtener más información, consulta la documentación de referencia de la API de Vision para Java.

/** Reads image {@code inputPath} and writes {@code outputPath} with {@code faces} outlined. */
private static void writeWithFaces(Path inputPath, Path outputPath, List<FaceAnnotation> faces)
    throws IOException {
  BufferedImage img = ImageIO.read(inputPath.toFile());
  annotateWithFaces(img, faces);
  ImageIO.write(img, "jpg", outputPath.toFile());
}

/** Annotates an image {@code img} with a polygon around each face in {@code faces}. */
public static void annotateWithFaces(BufferedImage img, List<FaceAnnotation> faces) {
  for (FaceAnnotation face : faces) {
    annotateWithFace(img, face);
  }
}

/** Annotates an image {@code img} with a polygon defined by {@code face}. */
private static void annotateWithFace(BufferedImage img, FaceAnnotation face) {
  Graphics2D gfx = img.createGraphics();
  Polygon poly = new Polygon();
  for (Vertex vertex : face.getFdBoundingPoly().getVertices()) {
    poly.addPoint(vertex.getX(), vertex.getY());
  }
  gfx.setStroke(new BasicStroke(5));
  gfx.setColor(new Color(0x00ff00));
  gfx.draw(poly);
}

Node.js

Antes de probar este código de muestra, sigue las instrucciones de configuración para Node.js que se encuentran en la Guía de inicio rápido de Vision sobre cómo usar las bibliotecas cliente. Si quieres obtener más información, consulta la documentación de referencia de la API de Vision para Node.js.

async function highlightFaces(inputFile, faces, outputFile, PImage) {
  // Open the original image
  const stream = fs.createReadStream(inputFile);
  let promise;
  if (inputFile.match(/\.jpg$/)) {
    promise = PImage.decodeJPEGFromStream(stream);
  } else if (inputFile.match(/\.png$/)) {
    promise = PImage.decodePNGFromStream(stream);
  } else {
    throw new Error(`Unknown filename extension ${inputFile}`);
  }
  const img = await promise;
  const context = img.getContext('2d');
  context.drawImage(img, 0, 0, img.width, img.height, 0, 0);

  // Now draw boxes around all the faces
  context.strokeStyle = 'rgba(0,255,0,0.8)';
  context.lineWidth = '5';

  faces.forEach(face => {
    context.beginPath();
    let origX = 0;
    let origY = 0;
    face.boundingPoly.vertices.forEach((bounds, i) => {
      if (i === 0) {
        origX = bounds.x;
        origY = bounds.y;
        context.moveTo(bounds.x, bounds.y);
      } else {
        context.lineTo(bounds.x, bounds.y);
      }
    });
    context.lineTo(origX, origY);
    context.stroke();
  });

  // Write the result to a file
  console.log(`Writing to file ${outputFile}`);
  const writeStream = fs.createWriteStream(outputFile);
  await PImage.encodePNGToStream(img, writeStream);
}

PHP

Antes de probar este código de muestra, sigue las instrucciones de configuración para PHP que se encuentran en la Guía de inicio rápido de Vision sobre cómo usar las bibliotecas cliente. Si quieres obtener más información, consulta la documentación de referencia de la API de Vision para PHP.

# draw box around faces
if ($faces && $outFile) {
    $imageCreateFunc = [
        'png' => 'imagecreatefrompng',
        'gd' => 'imagecreatefromgd',
        'gif' => 'imagecreatefromgif',
        'jpg' => 'imagecreatefromjpeg',
        'jpeg' => 'imagecreatefromjpeg',
    ];
    $imageWriteFunc = [
        'png' => 'imagepng',
        'gd' => 'imagegd',
        'gif' => 'imagegif',
        'jpg' => 'imagejpeg',
        'jpeg' => 'imagejpeg',
    ];

    copy($path, $outFile);
    $ext = strtolower(pathinfo($path, PATHINFO_EXTENSION));
    if (!array_key_exists($ext, $imageCreateFunc)) {
        throw new \Exception('Unsupported image extension');
    }
    $outputImage = call_user_func($imageCreateFunc[$ext], $outFile);

    foreach ($faces as $face) {
        $vertices = $face->getBoundingPoly()->getVertices();
        if ($vertices) {
            $x1 = $vertices[0]->getX();
            $y1 = $vertices[0]->getY();
            $x2 = $vertices[2]->getX();
            $y2 = $vertices[2]->getY();
            imagerectangle($outputImage, $x1, $y1, $x2, $y2, 0x00ff00);
        }
    }

Python

Antes de probar este código de muestra, sigue las instrucciones de configuración para Python que se encuentran en la Guía de inicio rápido de Vision sobre cómo usar las bibliotecas cliente. Si quieres obtener más información, consulta la documentación de referencia de la API de Vision para Python.

def highlight_faces(image, faces, output_filename):
    """Draws a polygon around the faces, then saves to output_filename.

    Args:
      image: a file containing the image with the faces.
      faces: a list of faces found in the file. This should be in the format
          returned by the Vision API.
      output_filename: the name of the image file to be created, where the
          faces have polygons drawn around them.
    """
    im = Image.open(image)
    draw = ImageDraw.Draw(im)
    # Sepecify the font-family and the font-size
    for face in faces:
        box = [(vertex.x, vertex.y)
               for vertex in face.bounding_poly.vertices]
        draw.line(box + [box[0]], width=5, fill='#00ff00')
        # Place the confidence value/score of the detected faces above the
        # detection box in the output image
        draw.text(((face.bounding_poly.vertices)[0].x,
                   (face.bounding_poly.vertices)[0].y - 30),
                  str(format(face.detection_confidence, '.3f')) + '%',
                  fill='#FF0000')
    im.save(output_filename)

¿Qué sigue?

Para buscar y filtrar muestras de código para otros productos de Google Cloud, consulta el navegador de muestra de Google Cloud.