Annoter un lot de fichiers locaux

Annote un lot de fichiers locaux en ligne.

En savoir plus

Pour obtenir une documentation détaillée incluant cet exemple de code, consultez la page suivante :

Exemple de code

Java

Avant d'essayer cet exemple, suivez les instructions de configuration pour Java décrites dans le guide de démarrage rapide de Vision à l'aide des bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API Cloud Vision en langage Java.

Pour vous authentifier auprès de Vision, configurez le service Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.

import com.google.cloud.vision.v1.AnnotateFileRequest;
import com.google.cloud.vision.v1.AnnotateImageResponse;
import com.google.cloud.vision.v1.BatchAnnotateFilesRequest;
import com.google.cloud.vision.v1.BatchAnnotateFilesResponse;
import com.google.cloud.vision.v1.Block;
import com.google.cloud.vision.v1.Feature;
import com.google.cloud.vision.v1.ImageAnnotatorClient;
import com.google.cloud.vision.v1.InputConfig;
import com.google.cloud.vision.v1.Page;
import com.google.cloud.vision.v1.Paragraph;
import com.google.cloud.vision.v1.Symbol;
import com.google.cloud.vision.v1.Word;
import com.google.protobuf.ByteString;
import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;

public class BatchAnnotateFiles {

  public static void batchAnnotateFiles() throws IOException {
    String filePath = "path/to/your/file.pdf";
    batchAnnotateFiles(filePath);
  }

  public static void batchAnnotateFiles(String filePath) throws IOException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (ImageAnnotatorClient imageAnnotatorClient = ImageAnnotatorClient.create()) {
      // You can send multiple files to be annotated, this sample demonstrates how to do this with
      // one file. If you want to use multiple files, you have to create a `AnnotateImageRequest`
      // object for each file that you want annotated.
      // First read the files contents
      Path path = Paths.get(filePath);
      byte[] data = Files.readAllBytes(path);
      ByteString content = ByteString.copyFrom(data);

      // Specify the input config with the file's contents and its type.
      // Supported mime_type: application/pdf, image/tiff, image/gif
      // https://cloud.google.com/vision/docs/reference/rpc/google.cloud.vision.v1#inputconfig
      InputConfig inputConfig =
          InputConfig.newBuilder().setMimeType("application/pdf").setContent(content).build();

      // Set the type of annotation you want to perform on the file
      // https://cloud.google.com/vision/docs/reference/rpc/google.cloud.vision.v1#google.cloud.vision.v1.Feature.Type
      Feature feature = Feature.newBuilder().setType(Feature.Type.DOCUMENT_TEXT_DETECTION).build();

      // Build the request object for that one file. Note: for additional file you have to create
      // additional `AnnotateFileRequest` objects and store them in a list to be used below.
      // Since we are sending a file of type `application/pdf`, we can use the `pages` field to
      // specify which pages to process. The service can process up to 5 pages per document file.
      // https://cloud.google.com/vision/docs/reference/rpc/google.cloud.vision.v1#google.cloud.vision.v1.AnnotateFileRequest
      AnnotateFileRequest fileRequest =
          AnnotateFileRequest.newBuilder()
              .setInputConfig(inputConfig)
              .addFeatures(feature)
              .addPages(1) // Process the first page
              .addPages(2) // Process the second page
              .addPages(-1) // Process the last page
              .build();

      // Add each `AnnotateFileRequest` object to the batch request.
      BatchAnnotateFilesRequest request =
          BatchAnnotateFilesRequest.newBuilder().addRequests(fileRequest).build();

      // Make the synchronous batch request.
      BatchAnnotateFilesResponse response = imageAnnotatorClient.batchAnnotateFiles(request);

      // Process the results, just get the first result, since only one file was sent in this
      // sample.
      for (AnnotateImageResponse imageResponse :
          response.getResponsesList().get(0).getResponsesList()) {
        System.out.format("Full text: %s%n", imageResponse.getFullTextAnnotation().getText());
        for (Page page : imageResponse.getFullTextAnnotation().getPagesList()) {
          for (Block block : page.getBlocksList()) {
            System.out.format("%nBlock confidence: %s%n", block.getConfidence());
            for (Paragraph par : block.getParagraphsList()) {
              System.out.format("\tParagraph confidence: %s%n", par.getConfidence());
              for (Word word : par.getWordsList()) {
                System.out.format("\t\tWord confidence: %s%n", word.getConfidence());
                for (Symbol symbol : word.getSymbolsList()) {
                  System.out.format(
                      "\t\t\tSymbol: %s, (confidence: %s)%n",
                      symbol.getText(), symbol.getConfidence());
                }
              }
            }
          }
        }
      }
    }
  }
}

Node.js

Avant d'essayer cet exemple, suivez les instructions de configuration pour Node.js décrites dans le guide de démarrage rapide de Vision à l'aide des bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API Cloud Vision en langage Node.js.

Pour vous authentifier auprès de Vision, configurez le service Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.

/**
 * TODO(developer): Uncomment these variables before running the sample.
 */
// const fileName = 'path/to/your/file.pdf';

// Imports the Google Cloud client libraries
const {ImageAnnotatorClient} = require('@google-cloud/vision').v1;
const fs = require('fs').promises;

// Instantiates a client
const client = new ImageAnnotatorClient();

// You can send multiple files to be annotated, this sample demonstrates how to do this with
// one file. If you want to use multiple files, you have to create a request object for each file that you want annotated.
async function batchAnnotateFiles() {
  // First Specify the input config with the file's path and its type.
  // Supported mime_type: application/pdf, image/tiff, image/gif
  // https://cloud.google.com/vision/docs/reference/rpc/google.cloud.vision.v1#inputconfig
  const inputConfig = {
    mimeType: 'application/pdf',
    content: await fs.readFile(fileName),
  };

  // Set the type of annotation you want to perform on the file
  // https://cloud.google.com/vision/docs/reference/rpc/google.cloud.vision.v1#google.cloud.vision.v1.Feature.Type
  const features = [{type: 'DOCUMENT_TEXT_DETECTION'}];

  // Build the request object for that one file. Note: for additional files you have to create
  // additional file request objects and store them in a list to be used below.
  // Since we are sending a file of type `application/pdf`, we can use the `pages` field to
  // specify which pages to process. The service can process up to 5 pages per document file.
  // https://cloud.google.com/vision/docs/reference/rpc/google.cloud.vision.v1#google.cloud.vision.v1.AnnotateFileRequest
  const fileRequest = {
    inputConfig: inputConfig,
    features: features,
    // Annotate the first two pages and the last one (max 5 pages)
    // First page starts at 1, and not 0. Last page is -1.
    pages: [1, 2, -1],
  };

  // Add each `AnnotateFileRequest` object to the batch request.
  const request = {
    requests: [fileRequest],
  };

  // Make the synchronous batch request.
  const [result] = await client.batchAnnotateFiles(request);

  // Process the results, just get the first result, since only one file was sent in this
  // sample.
  const responses = result.responses[0].responses;

  for (const response of responses) {
    console.log(`Full text: ${response.fullTextAnnotation.text}`);
    for (const page of response.fullTextAnnotation.pages) {
      for (const block of page.blocks) {
        console.log(`Block confidence: ${block.confidence}`);
        for (const paragraph of block.paragraphs) {
          console.log(` Paragraph confidence: ${paragraph.confidence}`);
          for (const word of paragraph.words) {
            const symbol_texts = word.symbols.map(symbol => symbol.text);
            const word_text = symbol_texts.join('');
            console.log(
              `  Word text: ${word_text} (confidence: ${word.confidence})`
            );
            for (const symbol of word.symbols) {
              console.log(
                `   Symbol: ${symbol.text} (confidence: ${symbol.confidence})`
              );
            }
          }
        }
      }
    }
  }
}

batchAnnotateFiles();

Python

Avant d'essayer cet exemple, suivez les instructions de configuration pour Python décrites dans le guide de démarrage rapide de Vision à l'aide des bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API Cloud Vision en langage Python.

Pour vous authentifier auprès de Vision, configurez le service Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.



from google.cloud import vision_v1


def sample_batch_annotate_files(file_path="path/to/your/document.pdf"):
    """Perform batch file annotation."""
    client = vision_v1.ImageAnnotatorClient()

    # Supported mime_type: application/pdf, image/tiff, image/gif
    mime_type = "application/pdf"
    with open(file_path, "rb") as f:
        content = f.read()
    input_config = {"mime_type": mime_type, "content": content}
    features = [{"type_": vision_v1.Feature.Type.DOCUMENT_TEXT_DETECTION}]

    # The service can process up to 5 pages per document file. Here we specify
    # the first, second, and last page of the document to be processed.
    pages = [1, 2, -1]
    requests = [{"input_config": input_config, "features": features, "pages": pages}]

    response = client.batch_annotate_files(requests=requests)
    for image_response in response.responses[0].responses:
        print(f"Full text: {image_response.full_text_annotation.text}")
        for page in image_response.full_text_annotation.pages:
            for block in page.blocks:
                print(f"\nBlock confidence: {block.confidence}")
                for par in block.paragraphs:
                    print(f"\tParagraph confidence: {par.confidence}")
                    for word in par.words:
                        print(f"\t\tWord confidence: {word.confidence}")
                        for symbol in word.symbols:
                            print(
                                "\t\t\tSymbol: {}, (confidence: {})".format(
                                    symbol.text, symbol.confidence
                                )
                            )

Étapes suivantes

Pour rechercher et filtrer des exemples de code pour d'autres produits Google Cloud, consultez l'explorateur d'exemples Google Cloud.