检测、跟踪、识别来自本地文件的视频内容中的徽标。
深入探索
如需查看包含此代码示例的详细文档,请参阅以下内容:
代码示例
Go
如需向 Video Intelligence 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证。
import (
"context"
"fmt"
"io"
"os"
"time"
video "cloud.google.com/go/videointelligence/apiv1"
videopb "cloud.google.com/go/videointelligence/apiv1/videointelligencepb"
"github.com/golang/protobuf/ptypes"
)
// logoDetection analyzes a video and extracts logos with their bounding boxes.
func logoDetection(w io.Writer, filename string) error {
// filename := "../testdata/googlework_short.mp4"
ctx := context.Background()
// Creates a client.
client, err := video.NewClient(ctx)
if err != nil {
return fmt.Errorf("video.NewClient: %w", err)
}
defer client.Close()
ctx, cancel := context.WithTimeout(ctx, time.Second*180)
defer cancel()
fileBytes, err := os.ReadFile(filename)
if err != nil {
return fmt.Errorf("os.ReadFile: %w", err)
}
op, err := client.AnnotateVideo(ctx, &videopb.AnnotateVideoRequest{
InputContent: fileBytes,
Features: []videopb.Feature{
videopb.Feature_LOGO_RECOGNITION,
},
})
if err != nil {
return fmt.Errorf("AnnotateVideo: %w", err)
}
resp, err := op.Wait(ctx)
if err != nil {
return fmt.Errorf("Wait: %w", err)
}
// Only one video was processed, so get the first result.
result := resp.GetAnnotationResults()[0]
// Annotations for list of logos detected, tracked and recognized in video.
for _, annotation := range result.LogoRecognitionAnnotations {
fmt.Fprintf(w, "Description: %q\n", annotation.Entity.GetDescription())
// Opaque entity ID. Some IDs may be available in Google Knowledge
// Graph Search API (https://developers.google.com/knowledge-graph/).
if len(annotation.Entity.EntityId) > 0 {
fmt.Fprintf(w, "\tEntity ID: %q\n", annotation.Entity.GetEntityId())
}
// All logo tracks where the recognized logo appears. Each track
// corresponds to one logo instance appearing in consecutive frames.
for _, track := range annotation.Tracks {
// Video segment of a track.
segment := track.GetSegment()
start, _ := ptypes.Duration(segment.GetStartTimeOffset())
end, _ := ptypes.Duration(segment.GetEndTimeOffset())
fmt.Fprintf(w, "\tSegment: %v to %v\n", start, end)
fmt.Fprintf(w, "\tConfidence: %f\n", track.GetConfidence())
// The object with timestamp and attributes per frame in the track.
for _, timestampedObject := range track.TimestampedObjects {
// Normalized Bounding box in a frame, where the object is
// located.
box := timestampedObject.GetNormalizedBoundingBox()
fmt.Fprintf(w, "\tBounding box position:\n")
fmt.Fprintf(w, "\t\tleft : %f\n", box.GetLeft())
fmt.Fprintf(w, "\t\ttop : %f\n", box.GetTop())
fmt.Fprintf(w, "\t\tright : %f\n", box.GetRight())
fmt.Fprintf(w, "\t\tbottom: %f\n", box.GetBottom())
// Optional. The attributes of the object in the bounding box.
for _, attribute := range timestampedObject.Attributes {
fmt.Fprintf(w, "\t\t\tName: %q\n", attribute.GetName())
fmt.Fprintf(w, "\t\t\tConfidence: %f\n", attribute.GetConfidence())
fmt.Fprintf(w, "\t\t\tValue: %q\n", attribute.GetValue())
}
}
// Optional. Attributes in the track level.
for _, trackAttribute := range track.Attributes {
fmt.Fprintf(w, "\t\tName: %q\n", trackAttribute.GetName())
fmt.Fprintf(w, "\t\tConfidence: %f\n", trackAttribute.GetConfidence())
fmt.Fprintf(w, "\t\tValue: %q\n", trackAttribute.GetValue())
}
}
// All video segments where the recognized logo appears. There might be
// multiple instances of the same logo class appearing in one VideoSegment.
for _, segment := range annotation.Segments {
start, _ := ptypes.Duration(segment.GetStartTimeOffset())
end, _ := ptypes.Duration(segment.GetEndTimeOffset())
fmt.Fprintf(w, "\tSegment: %v to %v\n", start, end)
}
}
return nil
}
Java
如需向 Video Intelligence 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证。
import com.google.api.gax.longrunning.OperationFuture;
import com.google.cloud.videointelligence.v1.AnnotateVideoProgress;
import com.google.cloud.videointelligence.v1.AnnotateVideoRequest;
import com.google.cloud.videointelligence.v1.AnnotateVideoResponse;
import com.google.cloud.videointelligence.v1.DetectedAttribute;
import com.google.cloud.videointelligence.v1.Entity;
import com.google.cloud.videointelligence.v1.Feature;
import com.google.cloud.videointelligence.v1.LogoRecognitionAnnotation;
import com.google.cloud.videointelligence.v1.NormalizedBoundingBox;
import com.google.cloud.videointelligence.v1.TimestampedObject;
import com.google.cloud.videointelligence.v1.Track;
import com.google.cloud.videointelligence.v1.VideoAnnotationResults;
import com.google.cloud.videointelligence.v1.VideoIntelligenceServiceClient;
import com.google.cloud.videointelligence.v1.VideoSegment;
import com.google.protobuf.ByteString;
import com.google.protobuf.Duration;
import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;
public class LogoDetection {
public static void detectLogo() throws Exception {
// TODO(developer): Replace these variables before running the sample.
String localFilePath = "path/to/your/video.mp4";
detectLogo(localFilePath);
}
public static void detectLogo(String filePath)
throws IOException, ExecutionException, InterruptedException, TimeoutException {
// Initialize client that will be used to send requests. This client only needs to be created
// once, and can be reused for multiple requests. After completing all of your requests, call
// the "close" method on the client to safely clean up any remaining background resources.
try (VideoIntelligenceServiceClient client = VideoIntelligenceServiceClient.create()) {
// Read file
Path path = Paths.get(filePath);
byte[] data = Files.readAllBytes(path);
// Create the request
AnnotateVideoRequest request =
AnnotateVideoRequest.newBuilder()
.setInputContent(ByteString.copyFrom(data))
.addFeatures(Feature.LOGO_RECOGNITION)
.build();
// asynchronously perform object tracking on videos
OperationFuture<AnnotateVideoResponse, AnnotateVideoProgress> future =
client.annotateVideoAsync(request);
System.out.println("Waiting for operation to complete...");
// The first result is retrieved because a single video was processed.
AnnotateVideoResponse response = future.get(300, TimeUnit.SECONDS);
VideoAnnotationResults annotationResult = response.getAnnotationResults(0);
// Annotations for list of logos detected, tracked and recognized in video.
for (LogoRecognitionAnnotation logoRecognitionAnnotation :
annotationResult.getLogoRecognitionAnnotationsList()) {
Entity entity = logoRecognitionAnnotation.getEntity();
// Opaque entity ID. Some IDs may be available in
// [Google Knowledge Graph Search API](https://developers.google.com/knowledge-graph/).
System.out.printf("Entity Id : %s\n", entity.getEntityId());
System.out.printf("Description : %s\n", entity.getDescription());
// All logo tracks where the recognized logo appears. Each track corresponds to one logo
// instance appearing in consecutive frames.
for (Track track : logoRecognitionAnnotation.getTracksList()) {
// Video segment of a track.
Duration startTimeOffset = track.getSegment().getStartTimeOffset();
System.out.printf(
"\n\tStart Time Offset: %s.%s\n",
startTimeOffset.getSeconds(), startTimeOffset.getNanos());
Duration endTimeOffset = track.getSegment().getEndTimeOffset();
System.out.printf(
"\tEnd Time Offset: %s.%s\n", endTimeOffset.getSeconds(), endTimeOffset.getNanos());
System.out.printf("\tConfidence: %s\n", track.getConfidence());
// The object with timestamp and attributes per frame in the track.
for (TimestampedObject timestampedObject : track.getTimestampedObjectsList()) {
// Normalized Bounding box in a frame, where the object is located.
NormalizedBoundingBox normalizedBoundingBox =
timestampedObject.getNormalizedBoundingBox();
System.out.printf("\n\t\tLeft: %s\n", normalizedBoundingBox.getLeft());
System.out.printf("\t\tTop: %s\n", normalizedBoundingBox.getTop());
System.out.printf("\t\tRight: %s\n", normalizedBoundingBox.getRight());
System.out.printf("\t\tBottom: %s\n", normalizedBoundingBox.getBottom());
// Optional. The attributes of the object in the bounding box.
for (DetectedAttribute attribute : timestampedObject.getAttributesList()) {
System.out.printf("\n\t\t\tName: %s\n", attribute.getName());
System.out.printf("\t\t\tConfidence: %s\n", attribute.getConfidence());
System.out.printf("\t\t\tValue: %s\n", attribute.getValue());
}
}
// Optional. Attributes in the track level.
for (DetectedAttribute trackAttribute : track.getAttributesList()) {
System.out.printf("\n\t\tName : %s\n", trackAttribute.getName());
System.out.printf("\t\tConfidence : %s\n", trackAttribute.getConfidence());
System.out.printf("\t\tValue : %s\n", trackAttribute.getValue());
}
}
// All video segments where the recognized logo appears. There might be multiple instances
// of the same logo class appearing in one VideoSegment.
for (VideoSegment segment : logoRecognitionAnnotation.getSegmentsList()) {
System.out.printf(
"\n\tStart Time Offset : %s.%s\n",
segment.getStartTimeOffset().getSeconds(), segment.getStartTimeOffset().getNanos());
System.out.printf(
"\tEnd Time Offset : %s.%s\n",
segment.getEndTimeOffset().getSeconds(), segment.getEndTimeOffset().getNanos());
}
}
}
}
}
Node.js
如需向 Video Intelligence 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证。
/**
* TODO(developer): Uncomment these variables before running the sample.
*/
// const localFilePath = 'path/to/your/video.mp4'
// Imports the Google Cloud client libraries
const Video = require('@google-cloud/video-intelligence');
const fs = require('fs');
// Instantiates a client
const client = new Video.VideoIntelligenceServiceClient();
// Performs asynchronous video annotation for logo recognition on a file.
async function detectLogo() {
const inputContent = fs.readFileSync(localFilePath).toString('base64');
// Build the request with the input content and logo recognition feature.
const request = {
inputContent: inputContent,
features: ['LOGO_RECOGNITION'],
};
// Make the asynchronous request
const [operation] = await client.annotateVideo(request);
// Wait for the results
const [response] = await operation.promise();
// Get the first response, since we sent only one video.
const annotationResult = response.annotationResults[0];
for (const logoRecognitionAnnotation of annotationResult.logoRecognitionAnnotations) {
const entity = logoRecognitionAnnotation.entity;
// Opaque entity ID. Some IDs may be available in
// [Google Knowledge Graph Search API](https://developers.google.com/knowledge-graph/).
console.log(`Entity Id: ${entity.entityId}`);
console.log(`Description: ${entity.description}`);
// All logo tracks where the recognized logo appears.
// Each track corresponds to one logo instance appearing in consecutive frames.
for (const track of logoRecognitionAnnotation.tracks) {
console.log(
`\n\tStart Time Offset: ${track.segment.startTimeOffset.seconds}.${track.segment.startTimeOffset.nanos}`
);
console.log(
`\tEnd Time Offset: ${track.segment.endTimeOffset.seconds}.${track.segment.endTimeOffset.nanos}`
);
console.log(`\tConfidence: ${track.confidence}`);
// The object with timestamp and attributes per frame in the track.
for (const timestampedObject of track.timestampedObjects) {
// Normalized Bounding box in a frame, where the object is located.
const normalizedBoundingBox = timestampedObject.normalizedBoundingBox;
console.log(`\n\t\tLeft: ${normalizedBoundingBox.left}`);
console.log(`\t\tTop: ${normalizedBoundingBox.top}`);
console.log(`\t\tRight: ${normalizedBoundingBox.right}`);
console.log(`\t\tBottom: ${normalizedBoundingBox.bottom}`);
// Optional. The attributes of the object in the bounding box.
for (const attribute of timestampedObject.attributes) {
console.log(`\n\t\t\tName: ${attribute.name}`);
console.log(`\t\t\tConfidence: ${attribute.confidence}`);
console.log(`\t\t\tValue: ${attribute.value}`);
}
}
// Optional. Attributes in the track level.
for (const trackAttribute of track.attributes) {
console.log(`\n\t\tName: ${trackAttribute.name}`);
console.log(`\t\tConfidence: ${trackAttribute.confidence}`);
console.log(`\t\tValue: ${trackAttribute.value}`);
}
}
// All video segments where the recognized logo appears.
// There might be multiple instances of the same logo class appearing in one VideoSegment.
for (const segment of logoRecognitionAnnotation.segments) {
console.log(
`\n\tStart Time Offset: ${segment.startTimeOffset.seconds}.${segment.startTimeOffset.nanos}`
);
console.log(
`\tEnd Time Offset: ${segment.endTimeOffset.seconds}.${segment.endTimeOffset.nanos}`
);
}
}
}
detectLogo();
Python
如需向 Video Intelligence 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证。
import io
from google.cloud import videointelligence
def detect_logo(local_file_path="path/to/your/video.mp4"):
"""Performs asynchronous video annotation for logo recognition on a local file."""
client = videointelligence.VideoIntelligenceServiceClient()
with io.open(local_file_path, "rb") as f:
input_content = f.read()
features = [videointelligence.Feature.LOGO_RECOGNITION]
operation = client.annotate_video(
request={"features": features, "input_content": input_content}
)
print("Waiting for operation to complete...")
response = operation.result()
# Get the first response, since we sent only one video.
annotation_result = response.annotation_results[0]
# Annotations for list of logos detected, tracked and recognized in video.
for logo_recognition_annotation in annotation_result.logo_recognition_annotations:
entity = logo_recognition_annotation.entity
# Opaque entity ID. Some IDs may be available in [Google Knowledge Graph
# Search API](https://developers.google.com/knowledge-graph/).
print("Entity Id : {}".format(entity.entity_id))
print("Description : {}".format(entity.description))
# All logo tracks where the recognized logo appears. Each track corresponds
# to one logo instance appearing in consecutive frames.
for track in logo_recognition_annotation.tracks:
# Video segment of a track.
print(
"\n\tStart Time Offset : {}.{}".format(
track.segment.start_time_offset.seconds,
track.segment.start_time_offset.microseconds * 1000,
)
)
print(
"\tEnd Time Offset : {}.{}".format(
track.segment.end_time_offset.seconds,
track.segment.end_time_offset.microseconds * 1000,
)
)
print("\tConfidence : {}".format(track.confidence))
# The object with timestamp and attributes per frame in the track.
for timestamped_object in track.timestamped_objects:
# Normalized Bounding box in a frame, where the object is located.
normalized_bounding_box = timestamped_object.normalized_bounding_box
print("\n\t\tLeft : {}".format(normalized_bounding_box.left))
print("\t\tTop : {}".format(normalized_bounding_box.top))
print("\t\tRight : {}".format(normalized_bounding_box.right))
print("\t\tBottom : {}".format(normalized_bounding_box.bottom))
# Optional. The attributes of the object in the bounding box.
for attribute in timestamped_object.attributes:
print("\n\t\t\tName : {}".format(attribute.name))
print("\t\t\tConfidence : {}".format(attribute.confidence))
print("\t\t\tValue : {}".format(attribute.value))
# Optional. Attributes in the track level.
for track_attribute in track.attributes:
print("\n\t\tName : {}".format(track_attribute.name))
print("\t\tConfidence : {}".format(track_attribute.confidence))
print("\t\tValue : {}".format(track_attribute.value))
# All video segments where the recognized logo appears. There might be
# multiple instances of the same logo class appearing in one VideoSegment.
for segment in logo_recognition_annotation.segments:
print(
"\n\tStart Time Offset : {}.{}".format(
segment.start_time_offset.seconds,
segment.start_time_offset.microseconds * 1000,
)
)
print(
"\tEnd Time Offset : {}.{}".format(
segment.end_time_offset.seconds,
segment.end_time_offset.microseconds * 1000,
)
)
后续步骤
如需搜索和过滤其他 Google Cloud 产品的代码示例,请参阅 Google Cloud 示例浏览器。