跟踪对象

对象跟踪功能可跟踪在输入视频中检测到的对象。要发出对象跟踪请求,请调用 annotate 方法并在 features 字段中指定 OBJECT_TRACKING

对于在视频或视频片段中检测到的实体和空间位置,对象跟踪请求会使用适合这些实体和空间位置的标签来注释视频。例如,如果某个视频中有车辆正在穿过交通信号灯,则可能会产生“汽车”、“卡车”、“自行车”、“轮胎”、“灯”、“窗户”等标签。每个标签可包括一系列边界框,其中每个边界框都有一个包含时间偏移量的关联时间段,该时间偏移量指示相对于视频开始时的时长偏移量。注释还包含其他实体信息,包括实体 ID,您可以在 Google Knowledge Graph Search API 中使用该实体 ID 查找有关实体的更多信息。

对象跟踪与标签检测

对象跟踪与标签检测的不同之处在于,标签检测提供的标签没有边界框,而对象跟踪则在每个时间步提供给定视频中存在的各个对象的标签以及每个对象实例的边界框。

系统会将相同对象类型的多个实例分配给 ObjectTrackingAnnotation 消息的不同实例,其中,给定对象跟踪的所有实例都保留在其自己的 ObjectTrackingAnnotation 实例中。例如,如果视频中有一辆红色汽车和一辆蓝色汽车显示了 5 秒,则跟踪请求应返回 ObjectTrackingAnnotation 的两个实例。第一个实例将包含两辆汽车之一(例如红色汽车)的位置,而第二个实例将包含另一辆汽车的位置。

请求对 Cloud Storage 中的视频执行对象跟踪

以下示例演示了如何对位于 Cloud Storage 中的文件进行对象跟踪。

REST

发送处理请求

下面演示了如何向 annotate 方法发送 POST 请求。本示例使用为项目设置的服务账号的访问令牌 使用 Google Cloud CLI如需了解有关安装 Google Cloud CLI、使用服务账号设置项目以及获取访问令牌的说明,请参阅 Video Intelligence 快速入门

在使用任何请求数据之前,请先进行以下替换:

  • INPUT_URISTORAGE_URI
    例如:
    "inputUri": "gs://cloud-videointelligence-demo/assistant.mp4",
  • PROJECT_NUMBER:您的 Google Cloud 项目的数字标识符

HTTP 方法和网址:

POST https://videointelligence.googleapis.com/v1/videos:annotate

请求 JSON 正文:

{
  "inputUri": "STORAGE_URI",
  "features": ["OBJECT_TRACKING"]
}

如需发送您的请求,请展开以下选项之一:

您应该收到类似以下内容的 JSON 响应:

{
  "name": "projects/PROJECT_NUMBER/locations/LOCATION_ID/operations/OPERATION_ID"
}

如果请求成功,Video Intelligence API 将返回操作的 name。上面的示例展示了此类响应的示例,其中 PROJECT_NUMBER 是您的项目编号,OPERATION_ID 是为请求创建的长时间运行的操作的 ID。

获取结果

要获取请求的结果,请使用对 videos:annotate 的调用返回的操作名称发送 GET,如下例所示。

在使用任何请求数据之前,请先进行以下替换:

  • OPERATION_NAME:Video Intelligence API 返回的操作名称。操作名称采用 projects/PROJECT_NUMBER/locations/LOCATION_ID/operations/OPERATION_ID 格式
  • PROJECT_NUMBER:您的 Google Cloud 项目的数字标识符

HTTP 方法和网址:

GET https://videointelligence.googleapis.com/v1/OPERATION_NAME

如需发送您的请求,请展开以下选项之一:

您应该收到类似以下内容的 JSON 响应:

下载注释结果

将来源中的注释复制到目标存储分区(请参阅复制文件和对象):

gcloud storage cp gcs_uri gs://my-bucket

注意:如果输出 gcs uri 由用户提供,则注释存储在该 gcs uri 中。

Go


import (
	"context"
	"fmt"
	"io"

	video "cloud.google.com/go/videointelligence/apiv1"
	videopb "cloud.google.com/go/videointelligence/apiv1/videointelligencepb"
	"github.com/golang/protobuf/ptypes"
)

// objectTrackingGCS analyzes a video and extracts entities with their bounding boxes.
func objectTrackingGCS(w io.Writer, gcsURI string) error {
	// gcsURI := "gs://cloud-samples-data/video/cat.mp4"

	ctx := context.Background()

	// Creates a client.
	client, err := video.NewClient(ctx)
	if err != nil {
		return fmt.Errorf("video.NewClient: %w", err)
	}
	defer client.Close()

	op, err := client.AnnotateVideo(ctx, &videopb.AnnotateVideoRequest{
		InputUri: gcsURI,
		Features: []videopb.Feature{
			videopb.Feature_OBJECT_TRACKING,
		},
	})
	if err != nil {
		return fmt.Errorf("AnnotateVideo: %w", err)
	}

	resp, err := op.Wait(ctx)
	if err != nil {
		return fmt.Errorf("Wait: %w", err)
	}

	// Only one video was processed, so get the first result.
	result := resp.GetAnnotationResults()[0]

	for _, annotation := range result.ObjectAnnotations {
		fmt.Fprintf(w, "Description: %q\n", annotation.Entity.GetDescription())
		if len(annotation.Entity.EntityId) > 0 {
			fmt.Fprintf(w, "\tEntity ID: %q\n", annotation.Entity.GetEntityId())
		}

		segment := annotation.GetSegment()
		start, _ := ptypes.Duration(segment.GetStartTimeOffset())
		end, _ := ptypes.Duration(segment.GetEndTimeOffset())
		fmt.Fprintf(w, "\tSegment: %v to %v\n", start, end)

		fmt.Fprintf(w, "\tConfidence: %f\n", annotation.GetConfidence())

		// Here we print only the bounding box of the first frame in this segment.
		frame := annotation.GetFrames()[0]
		seconds := float32(frame.GetTimeOffset().GetSeconds())
		nanos := float32(frame.GetTimeOffset().GetNanos())
		fmt.Fprintf(w, "\tTime offset of the first frame: %fs\n", seconds+nanos/1e9)

		box := frame.GetNormalizedBoundingBox()
		fmt.Fprintf(w, "\tBounding box position:\n")
		fmt.Fprintf(w, "\t\tleft  : %f\n", box.GetLeft())
		fmt.Fprintf(w, "\t\ttop   : %f\n", box.GetTop())
		fmt.Fprintf(w, "\t\tright : %f\n", box.GetRight())
		fmt.Fprintf(w, "\t\tbottom: %f\n", box.GetBottom())
	}

	return nil
}

Java

/**
 * Track objects in a video.
 *
 * @param gcsUri the path to the video file to analyze.
 */
public static VideoAnnotationResults trackObjectsGcs(String gcsUri) throws Exception {
  try (VideoIntelligenceServiceClient client = VideoIntelligenceServiceClient.create()) {
    // Create the request
    AnnotateVideoRequest request =
        AnnotateVideoRequest.newBuilder()
            .setInputUri(gcsUri)
            .addFeatures(Feature.OBJECT_TRACKING)
            .setLocationId("us-east1")
            .build();

    // asynchronously perform object tracking on videos
    OperationFuture<AnnotateVideoResponse, AnnotateVideoProgress> future =
        client.annotateVideoAsync(request);

    System.out.println("Waiting for operation to complete...");
    // The first result is retrieved because a single video was processed.
    AnnotateVideoResponse response = future.get(450, TimeUnit.SECONDS);
    VideoAnnotationResults results = response.getAnnotationResults(0);

    // Get only the first annotation for demo purposes.
    ObjectTrackingAnnotation annotation = results.getObjectAnnotations(0);
    System.out.println("Confidence: " + annotation.getConfidence());

    if (annotation.hasEntity()) {
      Entity entity = annotation.getEntity();
      System.out.println("Entity description: " + entity.getDescription());
      System.out.println("Entity id:: " + entity.getEntityId());
    }

    if (annotation.hasSegment()) {
      VideoSegment videoSegment = annotation.getSegment();
      Duration startTimeOffset = videoSegment.getStartTimeOffset();
      Duration endTimeOffset = videoSegment.getEndTimeOffset();
      // Display the segment time in seconds, 1e9 converts nanos to seconds
      System.out.println(
          String.format(
              "Segment: %.2fs to %.2fs",
              startTimeOffset.getSeconds() + startTimeOffset.getNanos() / 1e9,
              endTimeOffset.getSeconds() + endTimeOffset.getNanos() / 1e9));
    }

    // Here we print only the bounding box of the first frame in this segment.
    ObjectTrackingFrame frame = annotation.getFrames(0);
    // Display the offset time in seconds, 1e9 converts nanos to seconds
    Duration timeOffset = frame.getTimeOffset();
    System.out.println(
        String.format(
            "Time offset of the first frame: %.2fs",
            timeOffset.getSeconds() + timeOffset.getNanos() / 1e9));

    // Display the bounding box of the detected object
    NormalizedBoundingBox normalizedBoundingBox = frame.getNormalizedBoundingBox();
    System.out.println("Bounding box position:");
    System.out.println("\tleft: " + normalizedBoundingBox.getLeft());
    System.out.println("\ttop: " + normalizedBoundingBox.getTop());
    System.out.println("\tright: " + normalizedBoundingBox.getRight());
    System.out.println("\tbottom: " + normalizedBoundingBox.getBottom());
    return results;
  }
}

Node.js

如需向 Video Intelligence 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证

// Imports the Google Cloud Video Intelligence library
const Video = require('@google-cloud/video-intelligence');

// Creates a client
const video = new Video.VideoIntelligenceServiceClient();

/**
 * TODO(developer): Uncomment the following line before running the sample.
 */
// const gcsUri = 'GCS URI of the video to analyze, e.g. gs://my-bucket/my-video.mp4';

const request = {
  inputUri: gcsUri,
  features: ['OBJECT_TRACKING'],
  //recommended to use us-east1 for the best latency due to different types of processors used in this region and others
  locationId: 'us-east1',
};
// Detects objects in a video
const [operation] = await video.annotateVideo(request);
const results = await operation.promise();
console.log('Waiting for operation to complete...');
//Gets annotations for video
const annotations = results[0].annotationResults[0];
const objects = annotations.objectAnnotations;
objects.forEach(object => {
  console.log(`Entity description:  ${object.entity.description}`);
  console.log(`Entity id: ${object.entity.entityId}`);
  const time = object.segment;
  console.log(
    `Segment: ${time.startTimeOffset.seconds || 0}` +
      `.${(time.startTimeOffset.nanos / 1e6).toFixed(0)}s to ${
        time.endTimeOffset.seconds || 0
      }.` +
      `${(time.endTimeOffset.nanos / 1e6).toFixed(0)}s`
  );
  console.log(`Confidence: ${object.confidence}`);
  const frame = object.frames[0];
  const box = frame.normalizedBoundingBox;
  const timeOffset = frame.timeOffset;
  console.log(
    `Time offset for the first frame: ${timeOffset.seconds || 0}` +
      `.${(timeOffset.nanos / 1e6).toFixed(0)}s`
  );
  console.log('Bounding box position:');
  console.log(` left   :${box.left}`);
  console.log(` top    :${box.top}`);
  console.log(` right  :${box.right}`);
  console.log(` bottom :${box.bottom}`);
});

Python

"""Object tracking in a video stored on GCS."""
from google.cloud import videointelligence

video_client = videointelligence.VideoIntelligenceServiceClient()
features = [videointelligence.Feature.OBJECT_TRACKING]
operation = video_client.annotate_video(
    request={"features": features, "input_uri": gcs_uri}
)
print("\nProcessing video for object annotations.")

result = operation.result(timeout=500)
print("\nFinished processing.\n")

# The first result is retrieved because a single video was processed.
object_annotations = result.annotation_results[0].object_annotations

for object_annotation in object_annotations:
    print("Entity description: {}".format(object_annotation.entity.description))
    if object_annotation.entity.entity_id:
        print("Entity id: {}".format(object_annotation.entity.entity_id))

    print(
        "Segment: {}s to {}s".format(
            object_annotation.segment.start_time_offset.seconds
            + object_annotation.segment.start_time_offset.microseconds / 1e6,
            object_annotation.segment.end_time_offset.seconds
            + object_annotation.segment.end_time_offset.microseconds / 1e6,
        )
    )

    print("Confidence: {}".format(object_annotation.confidence))

    # Here we print only the bounding box of the first frame in the segment
    frame = object_annotation.frames[0]
    box = frame.normalized_bounding_box
    print(
        "Time offset of the first frame: {}s".format(
            frame.time_offset.seconds + frame.time_offset.microseconds / 1e6
        )
    )
    print("Bounding box position:")
    print("\tleft  : {}".format(box.left))
    print("\ttop   : {}".format(box.top))
    print("\tright : {}".format(box.right))
    print("\tbottom: {}".format(box.bottom))
    print("\n")

其他语言

C#: 请遵循 C# 设置说明 在客户端库页面上 然后访问 适用于 .NET 的 Video Intelligence 参考文档。

PHP: 请遵循 PHP 设置说明 在客户端库页面上 然后访问 适用于 PHP 的 Video Intelligence 参考文档。

Ruby: 请遵循 Ruby 设置说明 在客户端库页面上 然后访问 Ruby 版 Video Intelligence 参考文档。

请求对本地文件中的视频执行对象跟踪

以下示例展示如何对本地存储的文件执行对象跟踪。

REST

发送处理请求

要在本地视频文件上执行注释,请对视频文件的内容进行 base64 编码。在请求的 inputContent 字段中添加 base64 编码的内容。如需了解如何对视频文件的内容进行 base64 编码,请参阅 Base64 编码

下面演示了如何向 videos:annotate 方法发送 POST 请求。该示例使用 使用 Google Cloud CLI 为项目设置的服务账号。如需了解有关安装 Google Cloud CLI、使用服务账号设置项目以及获取访问令牌的说明,请参阅 Video Intelligence 快速入门

在使用任何请求数据之前,请先进行以下替换:

  • inputContentBASE64_ENCODED_CONTENT
    例如:"UklGRg41AwBBVkkgTElTVAwBAABoZHJsYXZpaDgAAAA1ggAAxPMBAAAAAAAQCAA..."
  • PROJECT_NUMBER:您的 Google Cloud 项目的数字标识符

HTTP 方法和网址:

POST https://videointelligence.googleapis.com/v1/videos:annotate

请求 JSON 正文:

{
  "inputContent": "BASE64_ENCODED_CONTENT",
  "features": ["OBJECT_TRACKING"]
}

如需发送您的请求,请展开以下选项之一:

您应该收到类似以下内容的 JSON 响应:

如果请求成功,则 Video Intelligence 会为您的操作分配 name。以下示例展示了此类响应,其中 PROJECT_NUMBER 是您的项目编号,OPERATION_ID 是为请求创建的长时间运行操作的 ID。

获取结果

要获取请求的结果,您必须使用对 videos:annotate 的调用返回的操作名称发送 GET,如下例所示。

在使用任何请求数据之前,请先进行以下替换:

  • OPERATION_NAME:Video Intelligence API 返回的操作名称。操作名称采用 projects/PROJECT_NUMBER/locations/LOCATION_ID/operations/OPERATION_ID 格式
  • PROJECT_NUMBER:您的 Google Cloud 项目的数字标识符

HTTP 方法和网址:

GET https://videointelligence.googleapis.com/v1/OPERATION_NAME

如需发送您的请求,请展开以下选项之一:

您应该收到类似以下内容的 JSON 响应:

Go


import (
	"context"
	"fmt"
	"io"
	"io/ioutil"

	video "cloud.google.com/go/videointelligence/apiv1"
	videopb "cloud.google.com/go/videointelligence/apiv1/videointelligencepb"
	"github.com/golang/protobuf/ptypes"
)

// objectTracking analyzes a video and extracts entities with their bounding boxes.
func objectTracking(w io.Writer, filename string) error {
	// filename := "../testdata/cat.mp4"

	ctx := context.Background()

	// Creates a client.
	client, err := video.NewClient(ctx)
	if err != nil {
		return fmt.Errorf("video.NewClient: %w", err)
	}
	defer client.Close()

	fileBytes, err := ioutil.ReadFile(filename)
	if err != nil {
		return err
	}

	op, err := client.AnnotateVideo(ctx, &videopb.AnnotateVideoRequest{
		InputContent: fileBytes,
		Features: []videopb.Feature{
			videopb.Feature_OBJECT_TRACKING,
		},
	})
	if err != nil {
		return fmt.Errorf("AnnotateVideo: %w", err)
	}

	resp, err := op.Wait(ctx)
	if err != nil {
		return fmt.Errorf("Wait: %w", err)
	}

	// Only one video was processed, so get the first result.
	result := resp.GetAnnotationResults()[0]

	for _, annotation := range result.ObjectAnnotations {
		fmt.Fprintf(w, "Description: %q\n", annotation.Entity.GetDescription())
		if len(annotation.Entity.EntityId) > 0 {
			fmt.Fprintf(w, "\tEntity ID: %q\n", annotation.Entity.GetEntityId())
		}

		segment := annotation.GetSegment()
		start, _ := ptypes.Duration(segment.GetStartTimeOffset())
		end, _ := ptypes.Duration(segment.GetEndTimeOffset())
		fmt.Fprintf(w, "\tSegment: %v to %v\n", start, end)

		fmt.Fprintf(w, "\tConfidence: %f\n", annotation.GetConfidence())

		// Here we print only the bounding box of the first frame in this segment.
		frame := annotation.GetFrames()[0]
		seconds := float32(frame.GetTimeOffset().GetSeconds())
		nanos := float32(frame.GetTimeOffset().GetNanos())
		fmt.Fprintf(w, "\tTime offset of the first frame: %fs\n", seconds+nanos/1e9)

		box := frame.GetNormalizedBoundingBox()
		fmt.Fprintf(w, "\tBounding box position:\n")
		fmt.Fprintf(w, "\t\tleft  : %f\n", box.GetLeft())
		fmt.Fprintf(w, "\t\ttop   : %f\n", box.GetTop())
		fmt.Fprintf(w, "\t\tright : %f\n", box.GetRight())
		fmt.Fprintf(w, "\t\tbottom: %f\n", box.GetBottom())
	}

	return nil
}

Java

/**
 * Track objects in a video.
 *
 * @param filePath the path to the video file to analyze.
 */
public static VideoAnnotationResults trackObjects(String filePath) throws Exception {
  try (VideoIntelligenceServiceClient client = VideoIntelligenceServiceClient.create()) {
    // Read file
    Path path = Paths.get(filePath);
    byte[] data = Files.readAllBytes(path);

    // Create the request
    AnnotateVideoRequest request =
        AnnotateVideoRequest.newBuilder()
            .setInputContent(ByteString.copyFrom(data))
            .addFeatures(Feature.OBJECT_TRACKING)
            .setLocationId("us-east1")
            .build();

    // asynchronously perform object tracking on videos
    OperationFuture<AnnotateVideoResponse, AnnotateVideoProgress> future =
        client.annotateVideoAsync(request);

    System.out.println("Waiting for operation to complete...");
    // The first result is retrieved because a single video was processed.
    AnnotateVideoResponse response = future.get(450, TimeUnit.SECONDS);
    VideoAnnotationResults results = response.getAnnotationResults(0);

    // Get only the first annotation for demo purposes.
    ObjectTrackingAnnotation annotation = results.getObjectAnnotations(0);
    System.out.println("Confidence: " + annotation.getConfidence());

    if (annotation.hasEntity()) {
      Entity entity = annotation.getEntity();
      System.out.println("Entity description: " + entity.getDescription());
      System.out.println("Entity id:: " + entity.getEntityId());
    }

    if (annotation.hasSegment()) {
      VideoSegment videoSegment = annotation.getSegment();
      Duration startTimeOffset = videoSegment.getStartTimeOffset();
      Duration endTimeOffset = videoSegment.getEndTimeOffset();
      // Display the segment time in seconds, 1e9 converts nanos to seconds
      System.out.println(
          String.format(
              "Segment: %.2fs to %.2fs",
              startTimeOffset.getSeconds() + startTimeOffset.getNanos() / 1e9,
              endTimeOffset.getSeconds() + endTimeOffset.getNanos() / 1e9));
    }

    // Here we print only the bounding box of the first frame in this segment.
    ObjectTrackingFrame frame = annotation.getFrames(0);
    // Display the offset time in seconds, 1e9 converts nanos to seconds
    Duration timeOffset = frame.getTimeOffset();
    System.out.println(
        String.format(
            "Time offset of the first frame: %.2fs",
            timeOffset.getSeconds() + timeOffset.getNanos() / 1e9));

    // Display the bounding box of the detected object
    NormalizedBoundingBox normalizedBoundingBox = frame.getNormalizedBoundingBox();
    System.out.println("Bounding box position:");
    System.out.println("\tleft: " + normalizedBoundingBox.getLeft());
    System.out.println("\ttop: " + normalizedBoundingBox.getTop());
    System.out.println("\tright: " + normalizedBoundingBox.getRight());
    System.out.println("\tbottom: " + normalizedBoundingBox.getBottom());
    return results;
  }
}

Node.js

如需向 Video Intelligence 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证

// Imports the Google Cloud Video Intelligence library
const Video = require('@google-cloud/video-intelligence');
const fs = require('fs');
const util = require('util');
// Creates a client
const video = new Video.VideoIntelligenceServiceClient();
/**
 * TODO(developer): Uncomment the following line before running the sample.
 */
// const path = 'Local file to analyze, e.g. ./my-file.mp4';

// Reads a local video file and converts it to base64
const file = await util.promisify(fs.readFile)(path);
const inputContent = file.toString('base64');

const request = {
  inputContent: inputContent,
  features: ['OBJECT_TRACKING'],
  //recommended to use us-east1 for the best latency due to different types of processors used in this region and others
  locationId: 'us-east1',
};
// Detects objects in a video
const [operation] = await video.annotateVideo(request);
const results = await operation.promise();
console.log('Waiting for operation to complete...');
//Gets annotations for video
const annotations = results[0].annotationResults[0];
const objects = annotations.objectAnnotations;
objects.forEach(object => {
  console.log(`Entity description:  ${object.entity.description}`);
  console.log(`Entity id: ${object.entity.entityId}`);
  const time = object.segment;
  console.log(
    `Segment: ${time.startTimeOffset.seconds || 0}` +
      `.${(time.startTimeOffset.nanos / 1e6).toFixed(0)}s to ${
        time.endTimeOffset.seconds || 0
      }.` +
      `${(time.endTimeOffset.nanos / 1e6).toFixed(0)}s`
  );
  console.log(`Confidence: ${object.confidence}`);
  const frame = object.frames[0];
  const box = frame.normalizedBoundingBox;
  const timeOffset = frame.timeOffset;
  console.log(
    `Time offset for the first frame: ${timeOffset.seconds || 0}` +
      `.${(timeOffset.nanos / 1e6).toFixed(0)}s`
  );
  console.log('Bounding box position:');
  console.log(` left   :${box.left}`);
  console.log(` top    :${box.top}`);
  console.log(` right  :${box.right}`);
  console.log(` bottom :${box.bottom}`);
});

Python

"""Object tracking in a local video."""
from google.cloud import videointelligence

video_client = videointelligence.VideoIntelligenceServiceClient()
features = [videointelligence.Feature.OBJECT_TRACKING]

with io.open(path, "rb") as file:
    input_content = file.read()

operation = video_client.annotate_video(
    request={"features": features, "input_content": input_content}
)
print("\nProcessing video for object annotations.")

result = operation.result(timeout=500)
print("\nFinished processing.\n")

# The first result is retrieved because a single video was processed.
object_annotations = result.annotation_results[0].object_annotations

# Get only the first annotation for demo purposes.
object_annotation = object_annotations[0]
print("Entity description: {}".format(object_annotation.entity.description))
if object_annotation.entity.entity_id:
    print("Entity id: {}".format(object_annotation.entity.entity_id))

print(
    "Segment: {}s to {}s".format(
        object_annotation.segment.start_time_offset.seconds
        + object_annotation.segment.start_time_offset.microseconds / 1e6,
        object_annotation.segment.end_time_offset.seconds
        + object_annotation.segment.end_time_offset.microseconds / 1e6,
    )
)

print("Confidence: {}".format(object_annotation.confidence))

# Here we print only the bounding box of the first frame in this segment
frame = object_annotation.frames[0]
box = frame.normalized_bounding_box
print(
    "Time offset of the first frame: {}s".format(
        frame.time_offset.seconds + frame.time_offset.microseconds / 1e6
    )
)
print("Bounding box position:")
print("\tleft  : {}".format(box.left))
print("\ttop   : {}".format(box.top))
print("\tright : {}".format(box.right))
print("\tbottom: {}".format(box.bottom))
print("\n")

其他语言

C#: 请遵循 C# 设置说明 在客户端库页面上 然后访问 适用于 .NET 的 Video Intelligence 参考文档。

PHP: 请遵循 PHP 设置说明 在客户端库页面上 然后访问 适用于 PHP 的 Video Intelligence 参考文档。

Ruby: 请遵循 Ruby 设置说明 在客户端库页面上 然后访问 Ruby 版 Video Intelligence 参考文档。