Como reconhecer logotipos

A API Video Intelligence pode detectar, rastrear e reconhecer a presença de mais de 100.000 marcas e logotipos no conteúdo de vídeo.

Esta página descreve como reconhecer um logotipo em um vídeo usando a API Video Intelligence.

Anotar um vídeo no Cloud Storage

O exemplo de código a seguir demonstra como detectar logotipos em um vídeo no Cloud Storage.

REST e LINHA DE CMD

Enviar a solicitação de processo

Para realizar a anotação em um arquivo de vídeo local, codifique em base64 o conteúdo do arquivo de vídeo. Inclua o conteúdo codificado em base64 no campo inputContent da solicitação. Para informações sobre como codificar o conteúdo de um arquivo de vídeo em base64, consulte Codificação em Base64.

Veja a seguir como enviar uma solicitação POST para o método videos:annotate. O exemplo utiliza o token de acesso para uma conta de serviço configurada para o projeto com o SDK do Cloud. Consulte o Guia de início rápido do Video Intelligence para instruções de como instalar o SDK do Cloud, configurar um projeto com uma conta de serviço e conseguir um token de acesso.

Antes de usar os dados da solicitação abaixo, faça as substituições a seguir:

  • input-uri: um bucket do Cloud Storage que contém o arquivo que você quer anotar, incluindo o nome do arquivo. É necessário começar com gs://.
    Por exemplo:
    "inputUri": "gs://cloud-videointelligence-demo/assistant.mp4",

Método HTTP e URL:

POST https://videointelligence.googleapis.com/v1/videos:annotate

Corpo JSON da solicitação:

{
    "inputUri":"input-uri",
    "features": ["LOGO_RECOGNITION"]
}

Para enviar a solicitação, expanda uma destas opções:

Você receberá uma resposta JSON semelhante a esta:

{
  "name": "projects/project-number/locations/location-id/operations/operation-id"
}

Se a resposta for bem-sucedida, a API Video Intelligence retornará o name para sua operação. O exemplo acima mostra um exemplo dessa resposta, em que project-number é o número do projeto e operation-id é o ID da operação de longa duração criado para a solicitação.

  • project-number: o número do seu projeto
  • location-id: a região do Cloud em que a anotação deve ocorrer. As regiões de nuvem compatíveis são: us-east1, us-west1, europe-west1 e asia-east1. Se nenhuma região for especificada, uma região será determinada com base na localização do arquivo de vídeo.
  • operation-id: o ID da operação de longa duração criada para a solicitação e fornecida na resposta quando você iniciou a operação. Por exemplo, 12345...

Ver os resultados

Para receber os resultados da solicitação, envie uma solicitação GET usando o nome da operação retornado da chamada para videos:annotate, conforme mostrado no exemplo a seguir.

Antes de usar os dados da solicitação abaixo, faça as substituições a seguir:

  • operation-name: o nome da operação, conforme retornado pela API Video Intelligence. O nome da operação tem o formato projects/project-number/locations/location-id/operations/operation-id.

Método HTTP e URL:

GET https://videointelligence.googleapis.com/v1/operation-name

Para enviar a solicitação, expanda uma destas opções:

Você receberá uma resposta JSON semelhante a esta:

C#

public static object DetectLogoGcs(string gcsUri)
{
    var client = VideoIntelligenceServiceClient.Create();
    var request = new AnnotateVideoRequest()
    {
        InputUri = gcsUri,
        Features = { Feature.LogoRecognition }
    };

    Console.WriteLine("\nWaiting for operation to complete...");
    var op = client.AnnotateVideo(request).PollUntilCompleted();

    // The first result is retrieved because a single video was processed.
    var annotationResults = op.Result.AnnotationResults[0];

    // Annotations for list of logos detected, tracked and recognized in video.
    foreach (var logoRecognitionAnnotation in annotationResults.LogoRecognitionAnnotations)
    {
        var entity = logoRecognitionAnnotation.Entity;
        // Opaque entity ID. Some IDs may be available in
        // [Google Knowledge Graph Search API](https://developers.google.com/knowledge-graph/).
        Console.WriteLine($"Entity ID :{entity.EntityId}");
        Console.WriteLine($"Description :{entity.Description}");

        // All logo tracks where the recognized logo appears. Each track corresponds to one logo
        // instance appearing in consecutive frames.
        foreach (var track in logoRecognitionAnnotation.Tracks)
        {
            // Video segment of a track.
            var startTimeOffset = track.Segment.StartTimeOffset;
            Console.WriteLine(
                $"Start Time Offset: {startTimeOffset.Seconds}.{startTimeOffset.Nanos}");
            var endTimeOffset = track.Segment.EndTimeOffset;
            Console.WriteLine(
                $"End Time Offset: {endTimeOffset.Seconds}.{endTimeOffset.Seconds}");
            Console.WriteLine($"\tConfidence: {track.Confidence}");

            // The object with timestamp and attributes per frame in the track.
            foreach (var timestampedObject in track.TimestampedObjects)
            {
                // Normalized Bounding box in a frame, where the object is located.
                var normalizedBoundingBox = timestampedObject.NormalizedBoundingBox;
                Console.WriteLine($"Left: {normalizedBoundingBox.Left}");
                Console.WriteLine($"Top: {normalizedBoundingBox.Top}");
                Console.WriteLine($"Right: {normalizedBoundingBox.Right}");
                Console.WriteLine($"Bottom: {normalizedBoundingBox.Bottom}");

                // Optional. The attributes of the object in the bounding box.
                foreach (var attribute in timestampedObject.Attributes)
                {
                    Console.WriteLine($"Name: {attribute.Name}");
                    Console.WriteLine($"Confidence: {attribute.Confidence}");
                    Console.WriteLine($"Value: {attribute.Value}");
                }

                // Optional. Attributes in the track level.
                foreach (var trackAttribute in track.Attributes)
                {
                    Console.WriteLine($"Name : {trackAttribute.Name}");
                    Console.WriteLine($"Confidence : {trackAttribute.Confidence}");
                    Console.WriteLine($"Value : {trackAttribute.Value}");
                }
            }

            // All video segments where the recognized logo appears. There might be multiple instances
            // of the same logo class appearing in one VideoSegment.
            foreach (var segment in logoRecognitionAnnotation.Segments)
            {
                Console.WriteLine(
                    $"Start Time Offset : {segment.StartTimeOffset.Seconds}.{segment.StartTimeOffset.Nanos}");
                Console.WriteLine(
                    $"End Time Offset : {segment.EndTimeOffset.Seconds}.{segment.EndTimeOffset.Nanos}");
            }
        }
    }
    return 0;
}

Go

import (
	"context"
	"fmt"
	"io"

	video "cloud.google.com/go/videointelligence/apiv1"
	"github.com/golang/protobuf/ptypes"
	videopb "google.golang.org/genproto/googleapis/cloud/videointelligence/v1"
)

// logoDetectionGCS analyzes a video and extracts logos with their bounding boxes.
func logoDetectionGCS(w io.Writer, gcsURI string) error {
	// gcsURI := "gs://cloud-samples-data/video/googlework_tiny.mp4"

	ctx := context.Background()

	// Creates a client.
	client, err := video.NewClient(ctx)
	if err != nil {
		return fmt.Errorf("video.NewClient: %v", err)
	}
	defer client.Close()

	op, err := client.AnnotateVideo(ctx, &videopb.AnnotateVideoRequest{
		InputUri: gcsURI,
		Features: []videopb.Feature{
			videopb.Feature_LOGO_RECOGNITION,
		},
	})
	if err != nil {
		return fmt.Errorf("AnnotateVideo: %v", err)
	}

	resp, err := op.Wait(ctx)
	if err != nil {
		return fmt.Errorf("Wait: %v", err)
	}

	// Only one video was processed, so get the first result.
	result := resp.GetAnnotationResults()[0]

	// Annotations for list of logos detected, tracked and recognized in video.
	for _, annotation := range result.LogoRecognitionAnnotations {
		fmt.Fprintf(w, "Description: %q\n", annotation.Entity.GetDescription())
		// Opaque entity ID. Some IDs may be available in Google Knowledge
		// Graph Search API (https://developers.google.com/knowledge-graph/).
		if len(annotation.Entity.EntityId) > 0 {
			fmt.Fprintf(w, "\tEntity ID: %q\n", annotation.Entity.GetEntityId())
		}

		// All logo tracks where the recognized logo appears. Each track
		// corresponds to one logo instance appearing in consecutive frames.
		for _, track := range annotation.Tracks {
			// Video segment of a track.
			segment := track.GetSegment()
			start, _ := ptypes.Duration(segment.GetStartTimeOffset())
			end, _ := ptypes.Duration(segment.GetEndTimeOffset())
			fmt.Fprintf(w, "\tSegment: %v to %v\n", start, end)
			fmt.Fprintf(w, "\tConfidence: %f\n", track.GetConfidence())

			// The object with timestamp and attributes per frame in the track.
			for _, timestampedObject := range track.TimestampedObjects {
				// Normalized Bounding box in a frame, where the object is
				// located.
				box := timestampedObject.GetNormalizedBoundingBox()
				fmt.Fprintf(w, "\tBounding box position:\n")
				fmt.Fprintf(w, "\t\tleft  : %f\n", box.GetLeft())
				fmt.Fprintf(w, "\t\ttop   : %f\n", box.GetTop())
				fmt.Fprintf(w, "\t\tright : %f\n", box.GetRight())
				fmt.Fprintf(w, "\t\tbottom: %f\n", box.GetBottom())

				// Optional. The attributes of the object in the bounding box.
				for _, attribute := range timestampedObject.Attributes {
					fmt.Fprintf(w, "\t\t\tName: %q\n", attribute.GetName())
					fmt.Fprintf(w, "\t\t\tConfidence: %f\n", attribute.GetConfidence())
					fmt.Fprintf(w, "\t\t\tValue: %q\n", attribute.GetValue())
				}
			}

			// Optional. Attributes in the track level.
			for _, trackAttribute := range track.Attributes {
				fmt.Fprintf(w, "\t\tName: %q\n", trackAttribute.GetName())
				fmt.Fprintf(w, "\t\tConfidence: %f\n", trackAttribute.GetConfidence())
				fmt.Fprintf(w, "\t\tValue: %q\n", trackAttribute.GetValue())
			}
		}

		// All video segments where the recognized logo appears. There might be
		// multiple instances of the same logo class appearing in one VideoSegment.
		for _, segment := range annotation.Segments {
			start, _ := ptypes.Duration(segment.GetStartTimeOffset())
			end, _ := ptypes.Duration(segment.GetEndTimeOffset())
			fmt.Fprintf(w, "\tSegment: %v to %v\n", start, end)
		}
	}

	return nil
}

Java

Ver no GitHub (em inglês) Feedback

import com.google.api.gax.longrunning.OperationFuture;
import com.google.cloud.videointelligence.v1.AnnotateVideoProgress;
import com.google.cloud.videointelligence.v1.AnnotateVideoRequest;
import com.google.cloud.videointelligence.v1.AnnotateVideoResponse;
import com.google.cloud.videointelligence.v1.DetectedAttribute;
import com.google.cloud.videointelligence.v1.Entity;
import com.google.cloud.videointelligence.v1.Feature;
import com.google.cloud.videointelligence.v1.LogoRecognitionAnnotation;
import com.google.cloud.videointelligence.v1.NormalizedBoundingBox;
import com.google.cloud.videointelligence.v1.TimestampedObject;
import com.google.cloud.videointelligence.v1.Track;
import com.google.cloud.videointelligence.v1.VideoAnnotationResults;
import com.google.cloud.videointelligence.v1.VideoIntelligenceServiceClient;
import com.google.cloud.videointelligence.v1.VideoSegment;
import com.google.protobuf.Duration;
import java.io.IOException;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;

public class LogoDetectionGcs {

  public static void detectLogoGcs() throws Exception {
    // TODO(developer): Replace these variables before running the sample.
    String gcsUri = "gs://YOUR_BUCKET_ID/path/to/your/video.mp4";
    detectLogoGcs(gcsUri);
  }

  public static void detectLogoGcs(String inputUri)
      throws IOException, ExecutionException, InterruptedException, TimeoutException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (VideoIntelligenceServiceClient client = VideoIntelligenceServiceClient.create()) {
      // Create the request
      AnnotateVideoRequest request =
          AnnotateVideoRequest.newBuilder()
              .setInputUri(inputUri)
              .addFeatures(Feature.LOGO_RECOGNITION)
              .build();

      // asynchronously perform object tracking on videos
      OperationFuture<AnnotateVideoResponse, AnnotateVideoProgress> future =
          client.annotateVideoAsync(request);

      System.out.println("Waiting for operation to complete...");
      // The first result is retrieved because a single video was processed.
      AnnotateVideoResponse response = future.get(300, TimeUnit.SECONDS);
      VideoAnnotationResults annotationResult = response.getAnnotationResults(0);

      // Annotations for list of logos detected, tracked and recognized in video.
      for (LogoRecognitionAnnotation logoRecognitionAnnotation :
          annotationResult.getLogoRecognitionAnnotationsList()) {
        Entity entity = logoRecognitionAnnotation.getEntity();
        // Opaque entity ID. Some IDs may be available in
        // [Google Knowledge Graph Search API](https://developers.google.com/knowledge-graph/).
        System.out.printf("Entity Id : %s\n", entity.getEntityId());
        System.out.printf("Description : %s\n", entity.getDescription());
        // All logo tracks where the recognized logo appears. Each track corresponds to one logo
        // instance appearing in consecutive frames.
        for (Track track : logoRecognitionAnnotation.getTracksList()) {

          // Video segment of a track.
          Duration startTimeOffset = track.getSegment().getStartTimeOffset();
          System.out.printf(
              "\n\tStart Time Offset: %s.%s\n",
              startTimeOffset.getSeconds(), startTimeOffset.getNanos());
          Duration endTimeOffset = track.getSegment().getEndTimeOffset();
          System.out.printf(
              "\tEnd Time Offset: %s.%s\n", endTimeOffset.getSeconds(), endTimeOffset.getNanos());
          System.out.printf("\tConfidence: %s\n", track.getConfidence());

          // The object with timestamp and attributes per frame in the track.
          for (TimestampedObject timestampedObject : track.getTimestampedObjectsList()) {

            // Normalized Bounding box in a frame, where the object is located.
            NormalizedBoundingBox normalizedBoundingBox =
                timestampedObject.getNormalizedBoundingBox();
            System.out.printf("\n\t\tLeft: %s\n", normalizedBoundingBox.getLeft());
            System.out.printf("\t\tTop: %s\n", normalizedBoundingBox.getTop());
            System.out.printf("\t\tRight: %s\n", normalizedBoundingBox.getRight());
            System.out.printf("\t\tBottom: %s\n", normalizedBoundingBox.getBottom());

            // Optional. The attributes of the object in the bounding box.
            for (DetectedAttribute attribute : timestampedObject.getAttributesList()) {
              System.out.printf("\n\t\t\tName: %s\n", attribute.getName());
              System.out.printf("\t\t\tConfidence: %s\n", attribute.getConfidence());
              System.out.printf("\t\t\tValue: %s\n", attribute.getValue());
            }
          }

          // Optional. Attributes in the track level.
          for (DetectedAttribute trackAttribute : track.getAttributesList()) {
            System.out.printf("\n\t\tName : %s\n", trackAttribute.getName());
            System.out.printf("\t\tConfidence : %s\n", trackAttribute.getConfidence());
            System.out.printf("\t\tValue : %s\n", trackAttribute.getValue());
          }
        }

        // All video segments where the recognized logo appears. There might be multiple instances
        // of the same logo class appearing in one VideoSegment.
        for (VideoSegment segment : logoRecognitionAnnotation.getSegmentsList()) {
          System.out.printf(
              "\n\tStart Time Offset : %s.%s\n",
              segment.getStartTimeOffset().getSeconds(), segment.getStartTimeOffset().getNanos());
          System.out.printf(
              "\tEnd Time Offset : %s.%s\n",
              segment.getEndTimeOffset().getSeconds(), segment.getEndTimeOffset().getNanos());
        }
      }
    }
  }
}

Node.js

Ver no GitHub (em inglês) Feedback
/**
 * TODO(developer): Uncomment these variables before running the sample.
 */
// const inputUri = 'gs://cloud-samples-data/video/googlework_short.mp4';

// Imports the Google Cloud client libraries
const Video = require('@google-cloud/video-intelligence');

// Instantiates a client
const client = new Video.VideoIntelligenceServiceClient();

// Performs asynchronous video annotation for logo recognition on a file hosted in GCS.
async function detectLogoGcs() {
  // Build the request with the input uri and logo recognition feature.
  const request = {
    inputUri: inputUri,
    features: ['LOGO_RECOGNITION'],
  };

  // Make the asynchronous request
  const [operation] = await client.annotateVideo(request);

  // Wait for the results
  const [response] = await operation.promise();

  // Get the first response, since we sent only one video.
  const annotationResult = response.annotationResults[0];
  for (const logoRecognitionAnnotation of annotationResult.logoRecognitionAnnotations) {
    const entity = logoRecognitionAnnotation.entity;
    // Opaque entity ID. Some IDs may be available in
    // [Google Knowledge Graph Search API](https://developers.google.com/knowledge-graph/).
    console.log(`Entity Id: ${entity.entityId}`);
    console.log(`Description: ${entity.description}`);

    // All logo tracks where the recognized logo appears.
    // Each track corresponds to one logo instance appearing in consecutive frames.
    for (const track of logoRecognitionAnnotation.tracks) {
      console.log(
        `\n\tStart Time Offset: ${track.segment.startTimeOffset.seconds}.${track.segment.startTimeOffset.nanos}`
      );
      console.log(
        `\tEnd Time Offset: ${track.segment.endTimeOffset.seconds}.${track.segment.endTimeOffset.nanos}`
      );
      console.log(`\tConfidence: ${track.confidence}`);

      // The object with timestamp and attributes per frame in the track.
      for (const timestampedObject of track.timestampedObjects) {
        // Normalized Bounding box in a frame, where the object is located.
        const normalizedBoundingBox = timestampedObject.normalizedBoundingBox;
        console.log(`\n\t\tLeft: ${normalizedBoundingBox.left}`);
        console.log(`\t\tTop: ${normalizedBoundingBox.top}`);
        console.log(`\t\tRight: ${normalizedBoundingBox.right}`);
        console.log(`\t\tBottom: ${normalizedBoundingBox.bottom}`);
        // Optional. The attributes of the object in the bounding box.
        for (const attribute of timestampedObject.attributes) {
          console.log(`\n\t\t\tName: ${attribute.name}`);
          console.log(`\t\t\tConfidence: ${attribute.confidence}`);
          console.log(`\t\t\tValue: ${attribute.value}`);
        }
      }

      // Optional. Attributes in the track level.
      for (const trackAttribute of track.attributes) {
        console.log(`\n\t\tName: ${trackAttribute.name}`);
        console.log(`\t\tConfidence: ${trackAttribute.confidence}`);
        console.log(`\t\tValue: ${trackAttribute.value}`);
      }
    }

    // All video segments where the recognized logo appears.
    // There might be multiple instances of the same logo class appearing in one VideoSegment.
    for (const segment of logoRecognitionAnnotation.segments) {
      console.log(
        `\n\tStart Time Offset: ${segment.startTimeOffset.seconds}.${segment.startTimeOffset.nanos}`
      );
      console.log(
        `\tEnd Time Offset: ${segment.endTimeOffset.seconds}.${segment.endTimeOffset.nanos}`
      );
    }
  }
}

detectLogoGcs();

Python


from google.cloud import videointelligence

def detect_logo_gcs(input_uri="gs://YOUR_BUCKET_ID/path/to/your/file.mp4"):

    client = videointelligence.VideoIntelligenceServiceClient()

    features = [videointelligence.enums.Feature.LOGO_RECOGNITION]

    operation = client.annotate_video(input_uri=input_uri, features=features)

    print(u"Waiting for operation to complete...")
    response = operation.result()

    # Get the first response, since we sent only one video.
    annotation_result = response.annotation_results[0]

    # Annotations for list of logos detected, tracked and recognized in video.
    for logo_recognition_annotation in annotation_result.logo_recognition_annotations:
        entity = logo_recognition_annotation.entity

        # Opaque entity ID. Some IDs may be available in [Google Knowledge Graph
        # Search API](https://developers.google.com/knowledge-graph/).
        print(u"Entity Id : {}".format(entity.entity_id))

        print(u"Description : {}".format(entity.description))

        # All logo tracks where the recognized logo appears. Each track corresponds
        # to one logo instance appearing in consecutive frames.
        for track in logo_recognition_annotation.tracks:

            # Video segment of a track.
            print(
                u"\n\tStart Time Offset : {}.{}".format(
                    track.segment.start_time_offset.seconds,
                    track.segment.start_time_offset.nanos,
                )
            )
            print(
                u"\tEnd Time Offset : {}.{}".format(
                    track.segment.end_time_offset.seconds,
                    track.segment.end_time_offset.nanos,
                )
            )
            print(u"\tConfidence : {}".format(track.confidence))

            # The object with timestamp and attributes per frame in the track.
            for timestamped_object in track.timestamped_objects:
                # Normalized Bounding box in a frame, where the object is located.
                normalized_bounding_box = timestamped_object.normalized_bounding_box
                print(u"\n\t\tLeft : {}".format(normalized_bounding_box.left))
                print(u"\t\tTop : {}".format(normalized_bounding_box.top))
                print(u"\t\tRight : {}".format(normalized_bounding_box.right))
                print(u"\t\tBottom : {}".format(normalized_bounding_box.bottom))

                # Optional. The attributes of the object in the bounding box.
                for attribute in timestamped_object.attributes:
                    print(u"\n\t\t\tName : {}".format(attribute.name))
                    print(u"\t\t\tConfidence : {}".format(attribute.confidence))
                    print(u"\t\t\tValue : {}".format(attribute.value))

            # Optional. Attributes in the track level.
            for track_attribute in track.attributes:
                print(u"\n\t\tName : {}".format(track_attribute.name))
                print(u"\t\tConfidence : {}".format(track_attribute.confidence))
                print(u"\t\tValue : {}".format(track_attribute.value))

        # All video segments where the recognized logo appears. There might be
        # multiple instances of the same logo class appearing in one VideoSegment.
        for segment in logo_recognition_annotation.segments:
            print(
                u"\n\tStart Time Offset : {}.{}".format(
                    segment.start_time_offset.seconds, segment.start_time_offset.nanos,
                )
            )
            print(
                u"\tEnd Time Offset : {}.{}".format(
                    segment.end_time_offset.seconds, segment.end_time_offset.nanos,
                )
            )

Anotar um vídeo local

confira na amostra de código a seguir como detectar logotipos em um arquivo de vídeo local.

REST e LINHA DE CMD

Enviar solicitação de anotação de vídeo

Para realizar a anotação em um arquivo de vídeo local, codifique em base64 o conteúdo do arquivo de vídeo. Inclua o conteúdo codificado em base64 no campo inputContent da solicitação. Para informações sobre como codificar o conteúdo de um arquivo de vídeo em base64, consulte Codificação em Base64.

Veja a seguir como enviar uma solicitação POST para o método videos:annotate. O exemplo utiliza o token de acesso para uma conta de serviço configurada para o projeto com o SDK do Cloud. Consulte o Guia de início rápido da API Video Intelligence para instruções de como instalar o SDK do Cloud, configurar um projeto com uma conta de serviço e conseguir um token de acesso

Antes de usar os dados da solicitação abaixo, faça as substituições a seguir:

  • "inputContent": base-64-encoded-content
    Por exemplo:
    "UklGRg41AwBBVkkgTElTVAwBAABoZHJsYXZpaDgAAAA1ggAAxPMBAAAAAAAQCAA..."
  • language-code: [opcional] consulte idiomas compatíveis

Método HTTP e URL:

POST https://videointelligence.googleapis.com/v1/videos:annotate

Corpo JSON da solicitação:

{
  "inputContent": "base-64-encoded-content",
  "features": ["LOGO_RECOGNITION"],
  "videoContext": {
  }
}

Para enviar a solicitação, expanda uma destas opções:

Você receberá uma resposta JSON semelhante a esta:

{
  "name": "projects/project-number/locations/location-id/operations/operation-id"
}

Se a resposta for bem-sucedida, a API Video Intelligence retornará o name para sua operação. O exemplo acima mostra um exemplo dessa resposta, em que project-number é o nome do projeto e operation-id é o ID da operação de longa duração criado para a solicitação.

  • operation-id: fornecido na resposta quando você iniciou a operação, por exemplo, 12345....

Ver os resultados de anotação

Para recuperar o resultado da operação, faça uma solicitação GET usando o nome da operação retornado da chamada para videos:annotate, conforme mostrado no exemplo a seguir.

Método HTTP e URL:

GET https://videointelligence.googleapis.com/v1/operation-name

Para enviar a solicitação, expanda uma destas opções:

Você receberá uma resposta JSON semelhante a esta:

As anotações de detecção de texto são retornadas como uma lista de textAnnotations. Observação: o campo done é retornado somente quando o valor dele é True. Ele não é incluído nas respostas de uma operação não concluída.

C#

public static object DetectLogo(string filePath)
{
    var client = VideoIntelligenceServiceClient.Create();
    var request = new AnnotateVideoRequest()
    {
        InputContent = Google.Protobuf.ByteString.CopyFrom(File.ReadAllBytes(filePath)),
        Features = { Feature.LogoRecognition }
    };

    Console.WriteLine("\nWaiting for operation to complete...");
    var op = client.AnnotateVideo(request).PollUntilCompleted();

    // The first result is retrieved because a single video was processed.
    var annotationResults = op.Result.AnnotationResults[0];

    // Annotations for list of logos detected, tracked and recognized in video.
    foreach (var logoRecognitionAnnotation in annotationResults.LogoRecognitionAnnotations)
    {
        var entity = logoRecognitionAnnotation.Entity;
        // Opaque entity ID. Some IDs may be available in
        // [Google Knowledge Graph Search API](https://developers.google.com/knowledge-graph/).
        Console.WriteLine($"Entity ID :{entity.EntityId}");
        Console.WriteLine($"Description :{entity.Description}");

        // All logo tracks where the recognized logo appears. Each track corresponds to one logo
        // instance appearing in consecutive frames.
        foreach (var track in logoRecognitionAnnotation.Tracks)
        {
            // Video segment of a track.
            var startTimeOffset = track.Segment.StartTimeOffset;
            Console.WriteLine(
                $"Start Time Offset: {startTimeOffset.Seconds}.{startTimeOffset.Nanos}");
            var endTimeOffset = track.Segment.EndTimeOffset;
            Console.WriteLine(
                $"End Time Offset: {endTimeOffset.Seconds}.{endTimeOffset.Seconds}");
            Console.WriteLine($"Confidence: {track.Confidence}");

            // The object with timestamp and attributes per frame in the track.
            foreach (var timestampedObject in track.TimestampedObjects)
            {
                // Normalized Bounding box in a frame, where the object is located.
                var normalizedBoundingBox = timestampedObject.NormalizedBoundingBox;
                Console.WriteLine($"Left: {normalizedBoundingBox.Left}");
                Console.WriteLine($"Top: {normalizedBoundingBox.Top}");
                Console.WriteLine($"Right: {normalizedBoundingBox.Right}");
                Console.WriteLine($"Bottom: {normalizedBoundingBox.Bottom}");

                // Optional. The attributes of the object in the bounding box.
                foreach (var attribute in timestampedObject.Attributes)
                {
                    Console.WriteLine($"Name: {attribute.Name}");
                    Console.WriteLine($"Confidence: {attribute.Confidence}");
                    Console.WriteLine($"Value: {attribute.Value}");
                }

                // Optional. Attributes in the track level.
                foreach (var trackAttribute in track.Attributes)
                {
                    Console.WriteLine($"Name : {trackAttribute.Name}");
                    Console.WriteLine($"Confidence : {trackAttribute.Confidence}");
                    Console.WriteLine($"Value : {trackAttribute.Value}");
                }
            }

            // All video segments where the recognized logo appears. There might be multiple instances
            // of the same logo class appearing in one VideoSegment.
            foreach (var segment in logoRecognitionAnnotation.Segments)
            {
                Console.WriteLine(
                    $"Start Time Offset : {segment.StartTimeOffset.Seconds}.{segment.StartTimeOffset.Nanos}");
                Console.WriteLine(
                    $"End Time Offset : {segment.EndTimeOffset.Seconds}.{segment.EndTimeOffset.Nanos}");
            }
        }
    }
    return 0;
}

Go

import (
	"context"
	"fmt"
	"io"
	"io/ioutil"

	video "cloud.google.com/go/videointelligence/apiv1"
	"github.com/golang/protobuf/ptypes"
	videopb "google.golang.org/genproto/googleapis/cloud/videointelligence/v1"
)

// logoDetection analyzes a video and extracts logos with their bounding boxes.
func logoDetection(w io.Writer, filename string) error {
	// filename := "../testdata/googlework_short.mp4"

	ctx := context.Background()

	// Creates a client.
	client, err := video.NewClient(ctx)
	if err != nil {
		return fmt.Errorf("video.NewClient: %v", err)
	}
	defer client.Close()

	fileBytes, err := ioutil.ReadFile(filename)
	if err != nil {
		return fmt.Errorf("ioutil.ReadFile: %v", err)
	}

	op, err := client.AnnotateVideo(ctx, &videopb.AnnotateVideoRequest{
		InputContent: fileBytes,
		Features: []videopb.Feature{
			videopb.Feature_LOGO_RECOGNITION,
		},
	})
	if err != nil {
		return fmt.Errorf("AnnotateVideo: %v", err)
	}

	resp, err := op.Wait(ctx)
	if err != nil {
		return fmt.Errorf("Wait: %v", err)
	}

	// Only one video was processed, so get the first result.
	result := resp.GetAnnotationResults()[0]

	// Annotations for list of logos detected, tracked and recognized in video.
	for _, annotation := range result.LogoRecognitionAnnotations {
		fmt.Fprintf(w, "Description: %q\n", annotation.Entity.GetDescription())
		// Opaque entity ID. Some IDs may be available in Google Knowledge
		// Graph Search API (https://developers.google.com/knowledge-graph/).
		if len(annotation.Entity.EntityId) > 0 {
			fmt.Fprintf(w, "\tEntity ID: %q\n", annotation.Entity.GetEntityId())
		}

		// All logo tracks where the recognized logo appears. Each track
		// corresponds to one logo instance appearing in consecutive frames.
		for _, track := range annotation.Tracks {
			// Video segment of a track.
			segment := track.GetSegment()
			start, _ := ptypes.Duration(segment.GetStartTimeOffset())
			end, _ := ptypes.Duration(segment.GetEndTimeOffset())
			fmt.Fprintf(w, "\tSegment: %v to %v\n", start, end)
			fmt.Fprintf(w, "\tConfidence: %f\n", track.GetConfidence())

			// The object with timestamp and attributes per frame in the track.
			for _, timestampedObject := range track.TimestampedObjects {
				// Normalized Bounding box in a frame, where the object is
				// located.
				box := timestampedObject.GetNormalizedBoundingBox()
				fmt.Fprintf(w, "\tBounding box position:\n")
				fmt.Fprintf(w, "\t\tleft  : %f\n", box.GetLeft())
				fmt.Fprintf(w, "\t\ttop   : %f\n", box.GetTop())
				fmt.Fprintf(w, "\t\tright : %f\n", box.GetRight())
				fmt.Fprintf(w, "\t\tbottom: %f\n", box.GetBottom())

				// Optional. The attributes of the object in the bounding box.
				for _, attribute := range timestampedObject.Attributes {
					fmt.Fprintf(w, "\t\t\tName: %q\n", attribute.GetName())
					fmt.Fprintf(w, "\t\t\tConfidence: %f\n", attribute.GetConfidence())
					fmt.Fprintf(w, "\t\t\tValue: %q\n", attribute.GetValue())
				}
			}

			// Optional. Attributes in the track level.
			for _, trackAttribute := range track.Attributes {
				fmt.Fprintf(w, "\t\tName: %q\n", trackAttribute.GetName())
				fmt.Fprintf(w, "\t\tConfidence: %f\n", trackAttribute.GetConfidence())
				fmt.Fprintf(w, "\t\tValue: %q\n", trackAttribute.GetValue())
			}
		}

		// All video segments where the recognized logo appears. There might be
		// multiple instances of the same logo class appearing in one VideoSegment.
		for _, segment := range annotation.Segments {
			start, _ := ptypes.Duration(segment.GetStartTimeOffset())
			end, _ := ptypes.Duration(segment.GetEndTimeOffset())
			fmt.Fprintf(w, "\tSegment: %v to %v\n", start, end)
		}
	}

	return nil
}

Java

Ver no GitHub (em inglês) Feedback

import com.google.api.gax.longrunning.OperationFuture;
import com.google.cloud.videointelligence.v1.AnnotateVideoProgress;
import com.google.cloud.videointelligence.v1.AnnotateVideoRequest;
import com.google.cloud.videointelligence.v1.AnnotateVideoResponse;
import com.google.cloud.videointelligence.v1.DetectedAttribute;
import com.google.cloud.videointelligence.v1.Entity;
import com.google.cloud.videointelligence.v1.Feature;
import com.google.cloud.videointelligence.v1.LogoRecognitionAnnotation;
import com.google.cloud.videointelligence.v1.NormalizedBoundingBox;
import com.google.cloud.videointelligence.v1.TimestampedObject;
import com.google.cloud.videointelligence.v1.Track;
import com.google.cloud.videointelligence.v1.VideoAnnotationResults;
import com.google.cloud.videointelligence.v1.VideoIntelligenceServiceClient;
import com.google.cloud.videointelligence.v1.VideoSegment;
import com.google.protobuf.ByteString;
import com.google.protobuf.Duration;
import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;

public class LogoDetection {

  public static void detectLogo() throws Exception {
    // TODO(developer): Replace these variables before running the sample.
    String localFilePath = "path/to/your/video.mp4";
    detectLogo(localFilePath);
  }

  public static void detectLogo(String filePath)
      throws IOException, ExecutionException, InterruptedException, TimeoutException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (VideoIntelligenceServiceClient client = VideoIntelligenceServiceClient.create()) {
      // Read file
      Path path = Paths.get(filePath);
      byte[] data = Files.readAllBytes(path);
      // Create the request
      AnnotateVideoRequest request =
          AnnotateVideoRequest.newBuilder()
              .setInputContent(ByteString.copyFrom(data))
              .addFeatures(Feature.LOGO_RECOGNITION)
              .build();

      // asynchronously perform object tracking on videos
      OperationFuture<AnnotateVideoResponse, AnnotateVideoProgress> future =
          client.annotateVideoAsync(request);

      System.out.println("Waiting for operation to complete...");
      // The first result is retrieved because a single video was processed.
      AnnotateVideoResponse response = future.get(300, TimeUnit.SECONDS);
      VideoAnnotationResults annotationResult = response.getAnnotationResults(0);

      // Annotations for list of logos detected, tracked and recognized in video.
      for (LogoRecognitionAnnotation logoRecognitionAnnotation :
          annotationResult.getLogoRecognitionAnnotationsList()) {
        Entity entity = logoRecognitionAnnotation.getEntity();
        // Opaque entity ID. Some IDs may be available in
        // [Google Knowledge Graph Search API](https://developers.google.com/knowledge-graph/).
        System.out.printf("Entity Id : %s\n", entity.getEntityId());
        System.out.printf("Description : %s\n", entity.getDescription());
        // All logo tracks where the recognized logo appears. Each track corresponds to one logo
        // instance appearing in consecutive frames.
        for (Track track : logoRecognitionAnnotation.getTracksList()) {

          // Video segment of a track.
          Duration startTimeOffset = track.getSegment().getStartTimeOffset();
          System.out.printf(
              "\n\tStart Time Offset: %s.%s\n",
              startTimeOffset.getSeconds(), startTimeOffset.getNanos());
          Duration endTimeOffset = track.getSegment().getEndTimeOffset();
          System.out.printf(
              "\tEnd Time Offset: %s.%s\n", endTimeOffset.getSeconds(), endTimeOffset.getNanos());
          System.out.printf("\tConfidence: %s\n", track.getConfidence());

          // The object with timestamp and attributes per frame in the track.
          for (TimestampedObject timestampedObject : track.getTimestampedObjectsList()) {

            // Normalized Bounding box in a frame, where the object is located.
            NormalizedBoundingBox normalizedBoundingBox =
                timestampedObject.getNormalizedBoundingBox();
            System.out.printf("\n\t\tLeft: %s\n", normalizedBoundingBox.getLeft());
            System.out.printf("\t\tTop: %s\n", normalizedBoundingBox.getTop());
            System.out.printf("\t\tRight: %s\n", normalizedBoundingBox.getRight());
            System.out.printf("\t\tBottom: %s\n", normalizedBoundingBox.getBottom());

            // Optional. The attributes of the object in the bounding box.
            for (DetectedAttribute attribute : timestampedObject.getAttributesList()) {
              System.out.printf("\n\t\t\tName: %s\n", attribute.getName());
              System.out.printf("\t\t\tConfidence: %s\n", attribute.getConfidence());
              System.out.printf("\t\t\tValue: %s\n", attribute.getValue());
            }
          }

          // Optional. Attributes in the track level.
          for (DetectedAttribute trackAttribute : track.getAttributesList()) {
            System.out.printf("\n\t\tName : %s\n", trackAttribute.getName());
            System.out.printf("\t\tConfidence : %s\n", trackAttribute.getConfidence());
            System.out.printf("\t\tValue : %s\n", trackAttribute.getValue());
          }
        }

        // All video segments where the recognized logo appears. There might be multiple instances
        // of the same logo class appearing in one VideoSegment.
        for (VideoSegment segment : logoRecognitionAnnotation.getSegmentsList()) {
          System.out.printf(
              "\n\tStart Time Offset : %s.%s\n",
              segment.getStartTimeOffset().getSeconds(), segment.getStartTimeOffset().getNanos());
          System.out.printf(
              "\tEnd Time Offset : %s.%s\n",
              segment.getEndTimeOffset().getSeconds(), segment.getEndTimeOffset().getNanos());
        }
      }
    }
  }
}

Node.js

Ver no GitHub (em inglês) Feedback
/**
 * TODO(developer): Uncomment these variables before running the sample.
 */
// const localFilePath = 'path/to/your/video.mp4'

// Imports the Google Cloud client libraries
const Video = require('@google-cloud/video-intelligence');
const fs = require('fs');

// Instantiates a client
const client = new Video.VideoIntelligenceServiceClient();

// Performs asynchronous video annotation for logo recognition on a file.
async function detectLogo() {
  const inputContent = fs.readFileSync(localFilePath).toString('base64');

  // Build the request with the input content and logo recognition feature.
  const request = {
    inputContent: inputContent,
    features: ['LOGO_RECOGNITION'],
  };

  // Make the asynchronous request
  const [operation] = await client.annotateVideo(request);

  // Wait for the results
  const [response] = await operation.promise();

  // Get the first response, since we sent only one video.
  const annotationResult = response.annotationResults[0];
  for (const logoRecognitionAnnotation of annotationResult.logoRecognitionAnnotations) {
    const entity = logoRecognitionAnnotation.entity;
    // Opaque entity ID. Some IDs may be available in
    // [Google Knowledge Graph Search API](https://developers.google.com/knowledge-graph/).
    console.log(`Entity Id: ${entity.entityId}`);
    console.log(`Description: ${entity.description}`);

    // All logo tracks where the recognized logo appears.
    // Each track corresponds to one logo instance appearing in consecutive frames.
    for (const track of logoRecognitionAnnotation.tracks) {
      console.log(
        `\n\tStart Time Offset: ${track.segment.startTimeOffset.seconds}.${track.segment.startTimeOffset.nanos}`
      );
      console.log(
        `\tEnd Time Offset: ${track.segment.endTimeOffset.seconds}.${track.segment.endTimeOffset.nanos}`
      );
      console.log(`\tConfidence: ${track.confidence}`);

      // The object with timestamp and attributes per frame in the track.
      for (const timestampedObject of track.timestampedObjects) {
        // Normalized Bounding box in a frame, where the object is located.
        const normalizedBoundingBox = timestampedObject.normalizedBoundingBox;
        console.log(`\n\t\tLeft: ${normalizedBoundingBox.left}`);
        console.log(`\t\tTop: ${normalizedBoundingBox.top}`);
        console.log(`\t\tRight: ${normalizedBoundingBox.right}`);
        console.log(`\t\tBottom: ${normalizedBoundingBox.bottom}`);
        // Optional. The attributes of the object in the bounding box.
        for (const attribute of timestampedObject.attributes) {
          console.log(`\n\t\t\tName: ${attribute.name}`);
          console.log(`\t\t\tConfidence: ${attribute.confidence}`);
          console.log(`\t\t\tValue: ${attribute.value}`);
        }
      }

      // Optional. Attributes in the track level.
      for (const trackAttribute of track.attributes) {
        console.log(`\n\t\tName: ${trackAttribute.name}`);
        console.log(`\t\tConfidence: ${trackAttribute.confidence}`);
        console.log(`\t\tValue: ${trackAttribute.value}`);
      }
    }

    // All video segments where the recognized logo appears.
    // There might be multiple instances of the same logo class appearing in one VideoSegment.
    for (const segment of logoRecognitionAnnotation.segments) {
      console.log(
        `\n\tStart Time Offset: ${segment.startTimeOffset.seconds}.${segment.startTimeOffset.nanos}`
      );
      console.log(
        `\tEnd Time Offset: ${segment.endTimeOffset.seconds}.${segment.endTimeOffset.nanos}`
      );
    }
  }
}

detectLogo();

Python


from google.cloud import videointelligence

def detect_logo(local_file_path="path/to/your/video.mp4"):
    """Performs asynchronous video annotation for logo recognition on a local file."""

    client = videointelligence.VideoIntelligenceServiceClient()

    with io.open(local_file_path, "rb") as f:
        input_content = f.read()
    features = [videointelligence.enums.Feature.LOGO_RECOGNITION]

    operation = client.annotate_video(input_content=input_content, features=features)

    print(u"Waiting for operation to complete...")
    response = operation.result()

    # Get the first response, since we sent only one video.
    annotation_result = response.annotation_results[0]

    # Annotations for list of logos detected, tracked and recognized in video.
    for logo_recognition_annotation in annotation_result.logo_recognition_annotations:
        entity = logo_recognition_annotation.entity

        # Opaque entity ID. Some IDs may be available in [Google Knowledge Graph
        # Search API](https://developers.google.com/knowledge-graph/).
        print(u"Entity Id : {}".format(entity.entity_id))

        print(u"Description : {}".format(entity.description))

        # All logo tracks where the recognized logo appears. Each track corresponds
        # to one logo instance appearing in consecutive frames.
        for track in logo_recognition_annotation.tracks:
            # Video segment of a track.
            print(
                u"\n\tStart Time Offset : {}.{}".format(
                    track.segment.start_time_offset.seconds,
                    track.segment.start_time_offset.nanos,
                )
            )
            print(
                u"\tEnd Time Offset : {}.{}".format(
                    track.segment.end_time_offset.seconds,
                    track.segment.end_time_offset.nanos,
                )
            )
            print(u"\tConfidence : {}".format(track.confidence))

            # The object with timestamp and attributes per frame in the track.
            for timestamped_object in track.timestamped_objects:

                # Normalized Bounding box in a frame, where the object is located.
                normalized_bounding_box = timestamped_object.normalized_bounding_box
                print(u"\n\t\tLeft : {}".format(normalized_bounding_box.left))
                print(u"\t\tTop : {}".format(normalized_bounding_box.top))
                print(u"\t\tRight : {}".format(normalized_bounding_box.right))
                print(u"\t\tBottom : {}".format(normalized_bounding_box.bottom))

                # Optional. The attributes of the object in the bounding box.
                for attribute in timestamped_object.attributes:
                    print(u"\n\t\t\tName : {}".format(attribute.name))
                    print(u"\t\t\tConfidence : {}".format(attribute.confidence))
                    print(u"\t\t\tValue : {}".format(attribute.value))

            # Optional. Attributes in the track level.
            for track_attribute in track.attributes:
                print(u"\n\t\tName : {}".format(track_attribute.name))
                print(u"\t\tConfidence : {}".format(track_attribute.confidence))
                print(u"\t\tValue : {}".format(track_attribute.value))

        # All video segments where the recognized logo appears. There might be
        # multiple instances of the same logo class appearing in one VideoSegment.
        for segment in logo_recognition_annotation.segments:
            print(
                u"\n\tStart Time Offset : {}.{}".format(
                    segment.start_time_offset.seconds, segment.start_time_offset.nanos,
                )
            )
            print(
                u"\tEnd Time Offset : {}.{}".format(
                    segment.end_time_offset.seconds, segment.end_time_offset.nanos,
                )
            )