Mengenali logo

Video Intelligence API dapat mendeteksi, melacak, dan mengenali keberadaan lebih dari 100.000 merek dan logo di konten video.

Halaman ini menjelaskan cara mengenali logo dalam video menggunakan Video Intelligence API.

Menganotasi video di Cloud Storage

Contoh kode berikut menunjukkan cara mendeteksi logo dalam video di Cloud Storage.

REST

Mengirim permintaan proses

Untuk menjalankan anotasi pada file video lokal, lakukan enkode base64 pada konten file video. Sertakan konten berenkode base64 di kolom inputContent pada permintaan. Untuk mengetahui informasi tentang cara mengenkode konten file video dengan base64, lihat Encoding Base64.

Berikut ini cara mengirim permintaan POST ke metode videos:annotate. Contoh ini menggunakan token akses untuk akun layanan yang disiapkan untuk project menggunakan Google Cloud CLI. Untuk mengetahui petunjuk cara menginstal Google Cloud CLI, menyiapkan project dengan akun layanan, dan mendapatkan token akses, lihat Panduan memulai Video Intelligence.

Sebelum menggunakan salah satu data permintaan, lakukan penggantian berikut:

  • INPUT_URI: bucket Cloud Storage yang berisi file yang ingin Anda beri anotasi, termasuk nama file-nya. Harus diawali dengan gs://.
    Contoh:
    "inputUri": "gs://cloud-videointelligence-demo/assistant.mp4",
  • PROJECT_NUMBER: ID numerik untuk project Google Cloud Anda

Metode HTTP dan URL:

POST https://videointelligence.googleapis.com/v1/videos:annotate

Meminta isi JSON:

{
    "inputUri":"INPUT_URI",
    "features": ["LOGO_RECOGNITION"]
}

Untuk mengirim permintaan Anda, perluas salah satu opsi berikut:

Anda akan melihat respons JSON seperti berikut:

{
  "name": "projects/PROJECT_NUMBER/locations/LOCATION_ID/operations/OPERATION_ID"
}

Jika respons berhasil, Video Intelligence API akan menampilkan name untuk operasi Anda. Di atas menunjukkan contoh respons tersebut, dengan: project-number adalah nomor project Anda dan operation-id adalah ID operasi yang berjalan lama yang dibuat untuk permintaan tersebut.

  • PROJECT_NUMBER: jumlah project Anda
  • LOCATION_ID: region Cloud tempat anotasi seharusnya dilakukan. Region cloud yang didukung adalah: us-east1, us-west1, europe-west1, asia-east1. Jika tidak ada wilayah yang ditentukan, wilayah akan ditentukan berdasarkan lokasi file video.
  • OPERATION_ID: ID operasi yang berjalan lama yang dibuat untuk permintaan dan diberikan dalam respons saat Anda memulai operasi, misalnya 12345...

Mendapatkan hasil

Untuk mendapatkan hasil permintaan, kirim permintaan GET menggunakan nama operasi yang ditampilkan dari panggilan ke videos:annotate, seperti yang ditunjukkan dalam contoh berikut.

Sebelum menggunakan salah satu data permintaan, lakukan penggantian berikut:

  • OPERATION_NAME: nama operasi seperti yang ditampilkan oleh Video Intelligence API. Nama operasi memiliki format projects/PROJECT_NUMBER/locations/LOCATION_ID/operations/OPERATION_ID
  • PROJECT_NUMBER: ID numerik untuk project Google Cloud Anda

Metode HTTP dan URL:

GET https://videointelligence.googleapis.com/v1/OPERATION_NAME

Untuk mengirim permintaan, perluas salah satu opsi berikut:

Anda akan menerima respons JSON yang mirip dengan yang berikut ini:

Download hasil anotasi

Salin anotasi dari sumber ke bucket tujuan: (lihat Menyalin file dan objek)

gsutil cp gcs_uri gs://my-bucket

Catatan: Jika output gcs uri disediakan oleh pengguna, anotasi akan disimpan dalam uri gcs tersebut.

Go

Untuk mengautentikasi ke Video Intelligence, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

import (
	"context"
	"fmt"
	"io"
	"time"

	video "cloud.google.com/go/videointelligence/apiv1"
	videopb "cloud.google.com/go/videointelligence/apiv1/videointelligencepb"
	"github.com/golang/protobuf/ptypes"
)

// logoDetectionGCS analyzes a video and extracts logos with their bounding boxes.
func logoDetectionGCS(w io.Writer, gcsURI string) error {
	// gcsURI := "gs://cloud-samples-data/video/googlework_tiny.mp4"

	ctx := context.Background()

	// Creates a client.
	client, err := video.NewClient(ctx)
	if err != nil {
		return fmt.Errorf("video.NewClient: %w", err)
	}
	defer client.Close()

	ctx, cancel := context.WithTimeout(ctx, time.Second*180)
	defer cancel()

	op, err := client.AnnotateVideo(ctx, &videopb.AnnotateVideoRequest{
		InputUri: gcsURI,
		Features: []videopb.Feature{
			videopb.Feature_LOGO_RECOGNITION,
		},
	})
	if err != nil {
		return fmt.Errorf("AnnotateVideo: %w", err)
	}

	resp, err := op.Wait(ctx)
	if err != nil {
		return fmt.Errorf("Wait: %w", err)
	}

	// Only one video was processed, so get the first result.
	result := resp.GetAnnotationResults()[0]

	// Annotations for list of logos detected, tracked and recognized in video.
	for _, annotation := range result.LogoRecognitionAnnotations {
		fmt.Fprintf(w, "Description: %q\n", annotation.Entity.GetDescription())
		// Opaque entity ID. Some IDs may be available in Google Knowledge
		// Graph Search API (https://developers.google.com/knowledge-graph/).
		if len(annotation.Entity.EntityId) > 0 {
			fmt.Fprintf(w, "\tEntity ID: %q\n", annotation.Entity.GetEntityId())
		}

		// All logo tracks where the recognized logo appears. Each track
		// corresponds to one logo instance appearing in consecutive frames.
		for _, track := range annotation.Tracks {
			// Video segment of a track.
			segment := track.GetSegment()
			start, _ := ptypes.Duration(segment.GetStartTimeOffset())
			end, _ := ptypes.Duration(segment.GetEndTimeOffset())
			fmt.Fprintf(w, "\tSegment: %v to %v\n", start, end)
			fmt.Fprintf(w, "\tConfidence: %f\n", track.GetConfidence())

			// The object with timestamp and attributes per frame in the track.
			for _, timestampedObject := range track.TimestampedObjects {
				// Normalized Bounding box in a frame, where the object is
				// located.
				box := timestampedObject.GetNormalizedBoundingBox()
				fmt.Fprintf(w, "\tBounding box position:\n")
				fmt.Fprintf(w, "\t\tleft  : %f\n", box.GetLeft())
				fmt.Fprintf(w, "\t\ttop   : %f\n", box.GetTop())
				fmt.Fprintf(w, "\t\tright : %f\n", box.GetRight())
				fmt.Fprintf(w, "\t\tbottom: %f\n", box.GetBottom())

				// Optional. The attributes of the object in the bounding box.
				for _, attribute := range timestampedObject.Attributes {
					fmt.Fprintf(w, "\t\t\tName: %q\n", attribute.GetName())
					fmt.Fprintf(w, "\t\t\tConfidence: %f\n", attribute.GetConfidence())
					fmt.Fprintf(w, "\t\t\tValue: %q\n", attribute.GetValue())
				}
			}

			// Optional. Attributes in the track level.
			for _, trackAttribute := range track.Attributes {
				fmt.Fprintf(w, "\t\tName: %q\n", trackAttribute.GetName())
				fmt.Fprintf(w, "\t\tConfidence: %f\n", trackAttribute.GetConfidence())
				fmt.Fprintf(w, "\t\tValue: %q\n", trackAttribute.GetValue())
			}
		}

		// All video segments where the recognized logo appears. There might be
		// multiple instances of the same logo class appearing in one VideoSegment.
		for _, segment := range annotation.Segments {
			start, _ := ptypes.Duration(segment.GetStartTimeOffset())
			end, _ := ptypes.Duration(segment.GetEndTimeOffset())
			fmt.Fprintf(w, "\tSegment: %v to %v\n", start, end)
		}
	}

	return nil
}

Java

Untuk mengautentikasi ke Video Intelligence, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.


import com.google.api.gax.longrunning.OperationFuture;
import com.google.cloud.videointelligence.v1.AnnotateVideoProgress;
import com.google.cloud.videointelligence.v1.AnnotateVideoRequest;
import com.google.cloud.videointelligence.v1.AnnotateVideoResponse;
import com.google.cloud.videointelligence.v1.DetectedAttribute;
import com.google.cloud.videointelligence.v1.Entity;
import com.google.cloud.videointelligence.v1.Feature;
import com.google.cloud.videointelligence.v1.LogoRecognitionAnnotation;
import com.google.cloud.videointelligence.v1.NormalizedBoundingBox;
import com.google.cloud.videointelligence.v1.TimestampedObject;
import com.google.cloud.videointelligence.v1.Track;
import com.google.cloud.videointelligence.v1.VideoAnnotationResults;
import com.google.cloud.videointelligence.v1.VideoIntelligenceServiceClient;
import com.google.cloud.videointelligence.v1.VideoSegment;
import com.google.protobuf.Duration;
import java.io.IOException;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;

public class LogoDetectionGcs {

  public static void detectLogoGcs() throws Exception {
    // TODO(developer): Replace these variables before running the sample.
    String gcsUri = "gs://YOUR_BUCKET_ID/path/to/your/video.mp4";
    detectLogoGcs(gcsUri);
  }

  public static void detectLogoGcs(String inputUri)
      throws IOException, ExecutionException, InterruptedException, TimeoutException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (VideoIntelligenceServiceClient client = VideoIntelligenceServiceClient.create()) {
      // Create the request
      AnnotateVideoRequest request =
          AnnotateVideoRequest.newBuilder()
              .setInputUri(inputUri)
              .addFeatures(Feature.LOGO_RECOGNITION)
              .build();

      // asynchronously perform object tracking on videos
      OperationFuture<AnnotateVideoResponse, AnnotateVideoProgress> future =
          client.annotateVideoAsync(request);

      System.out.println("Waiting for operation to complete...");
      // The first result is retrieved because a single video was processed.
      AnnotateVideoResponse response = future.get(600, TimeUnit.SECONDS);
      VideoAnnotationResults annotationResult = response.getAnnotationResults(0);

      // Annotations for list of logos detected, tracked and recognized in video.
      for (LogoRecognitionAnnotation logoRecognitionAnnotation :
          annotationResult.getLogoRecognitionAnnotationsList()) {
        Entity entity = logoRecognitionAnnotation.getEntity();
        // Opaque entity ID. Some IDs may be available in
        // [Google Knowledge Graph Search API](https://developers.google.com/knowledge-graph/).
        System.out.printf("Entity Id : %s\n", entity.getEntityId());
        System.out.printf("Description : %s\n", entity.getDescription());
        // All logo tracks where the recognized logo appears. Each track corresponds to one logo
        // instance appearing in consecutive frames.
        for (Track track : logoRecognitionAnnotation.getTracksList()) {

          // Video segment of a track.
          Duration startTimeOffset = track.getSegment().getStartTimeOffset();
          System.out.printf(
              "\n\tStart Time Offset: %s.%s\n",
              startTimeOffset.getSeconds(), startTimeOffset.getNanos());
          Duration endTimeOffset = track.getSegment().getEndTimeOffset();
          System.out.printf(
              "\tEnd Time Offset: %s.%s\n", endTimeOffset.getSeconds(), endTimeOffset.getNanos());
          System.out.printf("\tConfidence: %s\n", track.getConfidence());

          // The object with timestamp and attributes per frame in the track.
          for (TimestampedObject timestampedObject : track.getTimestampedObjectsList()) {

            // Normalized Bounding box in a frame, where the object is located.
            NormalizedBoundingBox normalizedBoundingBox =
                timestampedObject.getNormalizedBoundingBox();
            System.out.printf("\n\t\tLeft: %s\n", normalizedBoundingBox.getLeft());
            System.out.printf("\t\tTop: %s\n", normalizedBoundingBox.getTop());
            System.out.printf("\t\tRight: %s\n", normalizedBoundingBox.getRight());
            System.out.printf("\t\tBottom: %s\n", normalizedBoundingBox.getBottom());

            // Optional. The attributes of the object in the bounding box.
            for (DetectedAttribute attribute : timestampedObject.getAttributesList()) {
              System.out.printf("\n\t\t\tName: %s\n", attribute.getName());
              System.out.printf("\t\t\tConfidence: %s\n", attribute.getConfidence());
              System.out.printf("\t\t\tValue: %s\n", attribute.getValue());
            }
          }

          // Optional. Attributes in the track level.
          for (DetectedAttribute trackAttribute : track.getAttributesList()) {
            System.out.printf("\n\t\tName : %s\n", trackAttribute.getName());
            System.out.printf("\t\tConfidence : %s\n", trackAttribute.getConfidence());
            System.out.printf("\t\tValue : %s\n", trackAttribute.getValue());
          }
        }

        // All video segments where the recognized logo appears. There might be multiple instances
        // of the same logo class appearing in one VideoSegment.
        for (VideoSegment segment : logoRecognitionAnnotation.getSegmentsList()) {
          System.out.printf(
              "\n\tStart Time Offset : %s.%s\n",
              segment.getStartTimeOffset().getSeconds(), segment.getStartTimeOffset().getNanos());
          System.out.printf(
              "\tEnd Time Offset : %s.%s\n",
              segment.getEndTimeOffset().getSeconds(), segment.getEndTimeOffset().getNanos());
        }
      }
    }
  }
}

Node.js

Untuk mengautentikasi ke Video Intelligence, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

/**
 * TODO(developer): Uncomment these variables before running the sample.
 */
// const inputUri = 'gs://cloud-samples-data/video/googlework_short.mp4';

// Imports the Google Cloud client libraries
const Video = require('@google-cloud/video-intelligence');

// Instantiates a client
const client = new Video.VideoIntelligenceServiceClient();

// Performs asynchronous video annotation for logo recognition on a file hosted in GCS.
async function detectLogoGcs() {
  // Build the request with the input uri and logo recognition feature.
  const request = {
    inputUri: inputUri,
    features: ['LOGO_RECOGNITION'],
  };

  // Make the asynchronous request
  const [operation] = await client.annotateVideo(request);

  // Wait for the results
  const [response] = await operation.promise();

  // Get the first response, since we sent only one video.
  const annotationResult = response.annotationResults[0];
  for (const logoRecognitionAnnotation of annotationResult.logoRecognitionAnnotations) {
    const entity = logoRecognitionAnnotation.entity;
    // Opaque entity ID. Some IDs may be available in
    // [Google Knowledge Graph Search API](https://developers.google.com/knowledge-graph/).
    console.log(`Entity Id: ${entity.entityId}`);
    console.log(`Description: ${entity.description}`);

    // All logo tracks where the recognized logo appears.
    // Each track corresponds to one logo instance appearing in consecutive frames.
    for (const track of logoRecognitionAnnotation.tracks) {
      console.log(
        `\n\tStart Time Offset: ${track.segment.startTimeOffset.seconds}.${track.segment.startTimeOffset.nanos}`
      );
      console.log(
        `\tEnd Time Offset: ${track.segment.endTimeOffset.seconds}.${track.segment.endTimeOffset.nanos}`
      );
      console.log(`\tConfidence: ${track.confidence}`);

      // The object with timestamp and attributes per frame in the track.
      for (const timestampedObject of track.timestampedObjects) {
        // Normalized Bounding box in a frame, where the object is located.
        const normalizedBoundingBox = timestampedObject.normalizedBoundingBox;
        console.log(`\n\t\tLeft: ${normalizedBoundingBox.left}`);
        console.log(`\t\tTop: ${normalizedBoundingBox.top}`);
        console.log(`\t\tRight: ${normalizedBoundingBox.right}`);
        console.log(`\t\tBottom: ${normalizedBoundingBox.bottom}`);
        // Optional. The attributes of the object in the bounding box.
        for (const attribute of timestampedObject.attributes) {
          console.log(`\n\t\t\tName: ${attribute.name}`);
          console.log(`\t\t\tConfidence: ${attribute.confidence}`);
          console.log(`\t\t\tValue: ${attribute.value}`);
        }
      }

      // Optional. Attributes in the track level.
      for (const trackAttribute of track.attributes) {
        console.log(`\n\t\tName: ${trackAttribute.name}`);
        console.log(`\t\tConfidence: ${trackAttribute.confidence}`);
        console.log(`\t\tValue: ${trackAttribute.value}`);
      }
    }

    // All video segments where the recognized logo appears.
    // There might be multiple instances of the same logo class appearing in one VideoSegment.
    for (const segment of logoRecognitionAnnotation.segments) {
      console.log(
        `\n\tStart Time Offset: ${segment.startTimeOffset.seconds}.${segment.startTimeOffset.nanos}`
      );
      console.log(
        `\tEnd Time Offset: ${segment.endTimeOffset.seconds}.${segment.endTimeOffset.nanos}`
      );
    }
  }
}

detectLogoGcs();

Python

Untuk mengautentikasi ke Video Intelligence, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.


from google.cloud import videointelligence

def detect_logo_gcs(input_uri="gs://YOUR_BUCKET_ID/path/to/your/file.mp4"):
    client = videointelligence.VideoIntelligenceServiceClient()

    features = [videointelligence.Feature.LOGO_RECOGNITION]

    operation = client.annotate_video(
        request={"features": features, "input_uri": input_uri}
    )

    print("Waiting for operation to complete...")
    response = operation.result()

    # Get the first response, since we sent only one video.
    annotation_result = response.annotation_results[0]

    # Annotations for list of logos detected, tracked and recognized in video.
    for logo_recognition_annotation in annotation_result.logo_recognition_annotations:
        entity = logo_recognition_annotation.entity

        # Opaque entity ID. Some IDs may be available in [Google Knowledge Graph
        # Search API](https://developers.google.com/knowledge-graph/).
        print("Entity Id : {}".format(entity.entity_id))

        print("Description : {}".format(entity.description))

        # All logo tracks where the recognized logo appears. Each track corresponds
        # to one logo instance appearing in consecutive frames.
        for track in logo_recognition_annotation.tracks:
            # Video segment of a track.
            print(
                "\n\tStart Time Offset : {}.{}".format(
                    track.segment.start_time_offset.seconds,
                    track.segment.start_time_offset.microseconds * 1000,
                )
            )
            print(
                "\tEnd Time Offset : {}.{}".format(
                    track.segment.end_time_offset.seconds,
                    track.segment.end_time_offset.microseconds * 1000,
                )
            )
            print("\tConfidence : {}".format(track.confidence))

            # The object with timestamp and attributes per frame in the track.
            for timestamped_object in track.timestamped_objects:
                # Normalized Bounding box in a frame, where the object is located.
                normalized_bounding_box = timestamped_object.normalized_bounding_box
                print("\n\t\tLeft : {}".format(normalized_bounding_box.left))
                print("\t\tTop : {}".format(normalized_bounding_box.top))
                print("\t\tRight : {}".format(normalized_bounding_box.right))
                print("\t\tBottom : {}".format(normalized_bounding_box.bottom))

                # Optional. The attributes of the object in the bounding box.
                for attribute in timestamped_object.attributes:
                    print("\n\t\t\tName : {}".format(attribute.name))
                    print("\t\t\tConfidence : {}".format(attribute.confidence))
                    print("\t\t\tValue : {}".format(attribute.value))

            # Optional. Attributes in the track level.
            for track_attribute in track.attributes:
                print("\n\t\tName : {}".format(track_attribute.name))
                print("\t\tConfidence : {}".format(track_attribute.confidence))
                print("\t\tValue : {}".format(track_attribute.value))

        # All video segments where the recognized logo appears. There might be
        # multiple instances of the same logo class appearing in one VideoSegment.
        for segment in logo_recognition_annotation.segments:
            print(
                "\n\tStart Time Offset : {}.{}".format(
                    segment.start_time_offset.seconds,
                    segment.start_time_offset.microseconds * 1000,
                )
            )
            print(
                "\tEnd Time Offset : {}.{}".format(
                    segment.end_time_offset.seconds,
                    segment.end_time_offset.microseconds * 1000,
                )
            )

Bahasa tambahan

C#: Ikuti Petunjuk penyiapan C# di halaman library klien lalu buka Dokumentasi referensi Video Intelligence untuk .NET.

PHP: Ikuti petunjuk penyiapan PHP di halaman library klien lalu kunjungi Dokumentasi referensi Video Intelligence untuk PHP.

Ruby: Ikuti petunjuk penyiapan Ruby di halaman library klien, lalu buka Dokumentasi referensi Video Intelligence untuk Ruby.

Memberikan anotasi pada video lokal

Contoh kode berikut menunjukkan cara mendeteksi logo dalam file video lokal.

REST

Kirim permintaan anotasi video

Untuk menjalankan anotasi pada file video lokal, pastikan konten dalam file video dienkode dengan base64. Sertakan konten berenkode base64 di kolom inputContent pada permintaan. Untuk mengetahui informasi cara mengenkode konten file video dengan base64, lihat Encoding Base64.

Berikut ini cara mengirim permintaan POST ke metode videos:annotate. Contoh ini menggunakan token akses untuk akun layanan yang disiapkan untuk project menggunakan Google Cloud CLI. Untuk mendapatkan petunjuk tentang cara menginstal Google Cloud CLI, menyiapkan project dengan akun layanan, dan mendapatkan token akses, lihat Panduan Memulai Video Intelligence API

Sebelum menggunakan salah satu data permintaan, lakukan penggantian berikut:

  • "inputContent": BASE64_ENCODED_CONTENT
    Misalnya:
    "UklGRg41AwBBVkkgTElTVAwBAABoZHJsYXZpaDgAAAA1ggAAxPMBAAAAAAAQCAA..."
  • LANGUAGE_CODE: [Opsional] Lihat bahasa yang didukung
  • PROJECT_NUMBER: ID numerik untuk project Google Cloud Anda

Metode HTTP dan URL:

POST https://videointelligence.googleapis.com/v1/videos:annotate

Meminta isi JSON:

{
  "inputContent": "BASE64_ENCODED_CONTENT",
  "features": ["LOGO_RECOGNITION"],
  "videoContext": {
  }
}

Untuk mengirim permintaan Anda, perluas salah satu opsi berikut:

Anda akan melihat respons JSON seperti berikut:

{
  "name": "projects/PROJECT_NUMBER/locations/LOCATION_ID/operations/OPERATION_ID"
}

Jika respons berhasil, Video Intelligence API akan menampilkan name untuk operasi Anda. Di atas menunjukkan contoh respons tersebut, dengan project-number adalah nama project Anda dan operation-id adalah ID operasi yang berjalan lama yang dibuat untuk permintaan tersebut.

  • OPERATION_ID: diberikan dalam respons saat Anda memulai operasi, misalnya 12345...

Mendapatkan hasil anotasi

Untuk mengambil hasil operasi, buat permintaan GET menggunakan nama operasi yang ditampilkan dari panggilan ke videos:annotate, seperti yang ditunjukkan dalam contoh berikut.

Sebelum menggunakan salah satu data permintaan, lakukan penggantian berikut:

  • PROJECT_NUMBER: ID numerik untuk project Google Cloud Anda

Metode HTTP dan URL:

GET https://videointelligence.googleapis.com/v1/OPERATION_NAME

Untuk mengirim permintaan, perluas salah satu opsi berikut:

Anda akan menerima respons JSON yang mirip dengan yang berikut ini:

Anotasi deteksi teks ditampilkan sebagai daftar textAnnotations. Catatan: Kolom done hanya ditampilkan jika nilainya True. Ini tidak termasuk dalam respons dengan operasi yang belum selesai.

Go

Untuk mengautentikasi ke Video Intelligence, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

import (
	"context"
	"fmt"
	"io"
	"io/ioutil"
	"time"

	video "cloud.google.com/go/videointelligence/apiv1"
	videopb "cloud.google.com/go/videointelligence/apiv1/videointelligencepb"
	"github.com/golang/protobuf/ptypes"
)

// logoDetection analyzes a video and extracts logos with their bounding boxes.
func logoDetection(w io.Writer, filename string) error {
	// filename := "../testdata/googlework_short.mp4"

	ctx := context.Background()

	// Creates a client.
	client, err := video.NewClient(ctx)
	if err != nil {
		return fmt.Errorf("video.NewClient: %w", err)
	}
	defer client.Close()

	ctx, cancel := context.WithTimeout(ctx, time.Second*180)
	defer cancel()

	fileBytes, err := ioutil.ReadFile(filename)
	if err != nil {
		return fmt.Errorf("ioutil.ReadFile: %w", err)
	}

	op, err := client.AnnotateVideo(ctx, &videopb.AnnotateVideoRequest{
		InputContent: fileBytes,
		Features: []videopb.Feature{
			videopb.Feature_LOGO_RECOGNITION,
		},
	})
	if err != nil {
		return fmt.Errorf("AnnotateVideo: %w", err)
	}

	resp, err := op.Wait(ctx)
	if err != nil {
		return fmt.Errorf("Wait: %w", err)
	}

	// Only one video was processed, so get the first result.
	result := resp.GetAnnotationResults()[0]

	// Annotations for list of logos detected, tracked and recognized in video.
	for _, annotation := range result.LogoRecognitionAnnotations {
		fmt.Fprintf(w, "Description: %q\n", annotation.Entity.GetDescription())
		// Opaque entity ID. Some IDs may be available in Google Knowledge
		// Graph Search API (https://developers.google.com/knowledge-graph/).
		if len(annotation.Entity.EntityId) > 0 {
			fmt.Fprintf(w, "\tEntity ID: %q\n", annotation.Entity.GetEntityId())
		}

		// All logo tracks where the recognized logo appears. Each track
		// corresponds to one logo instance appearing in consecutive frames.
		for _, track := range annotation.Tracks {
			// Video segment of a track.
			segment := track.GetSegment()
			start, _ := ptypes.Duration(segment.GetStartTimeOffset())
			end, _ := ptypes.Duration(segment.GetEndTimeOffset())
			fmt.Fprintf(w, "\tSegment: %v to %v\n", start, end)
			fmt.Fprintf(w, "\tConfidence: %f\n", track.GetConfidence())

			// The object with timestamp and attributes per frame in the track.
			for _, timestampedObject := range track.TimestampedObjects {
				// Normalized Bounding box in a frame, where the object is
				// located.
				box := timestampedObject.GetNormalizedBoundingBox()
				fmt.Fprintf(w, "\tBounding box position:\n")
				fmt.Fprintf(w, "\t\tleft  : %f\n", box.GetLeft())
				fmt.Fprintf(w, "\t\ttop   : %f\n", box.GetTop())
				fmt.Fprintf(w, "\t\tright : %f\n", box.GetRight())
				fmt.Fprintf(w, "\t\tbottom: %f\n", box.GetBottom())

				// Optional. The attributes of the object in the bounding box.
				for _, attribute := range timestampedObject.Attributes {
					fmt.Fprintf(w, "\t\t\tName: %q\n", attribute.GetName())
					fmt.Fprintf(w, "\t\t\tConfidence: %f\n", attribute.GetConfidence())
					fmt.Fprintf(w, "\t\t\tValue: %q\n", attribute.GetValue())
				}
			}

			// Optional. Attributes in the track level.
			for _, trackAttribute := range track.Attributes {
				fmt.Fprintf(w, "\t\tName: %q\n", trackAttribute.GetName())
				fmt.Fprintf(w, "\t\tConfidence: %f\n", trackAttribute.GetConfidence())
				fmt.Fprintf(w, "\t\tValue: %q\n", trackAttribute.GetValue())
			}
		}

		// All video segments where the recognized logo appears. There might be
		// multiple instances of the same logo class appearing in one VideoSegment.
		for _, segment := range annotation.Segments {
			start, _ := ptypes.Duration(segment.GetStartTimeOffset())
			end, _ := ptypes.Duration(segment.GetEndTimeOffset())
			fmt.Fprintf(w, "\tSegment: %v to %v\n", start, end)
		}
	}

	return nil
}

Java

Untuk mengautentikasi ke Video Intelligence, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.


import com.google.api.gax.longrunning.OperationFuture;
import com.google.cloud.videointelligence.v1.AnnotateVideoProgress;
import com.google.cloud.videointelligence.v1.AnnotateVideoRequest;
import com.google.cloud.videointelligence.v1.AnnotateVideoResponse;
import com.google.cloud.videointelligence.v1.DetectedAttribute;
import com.google.cloud.videointelligence.v1.Entity;
import com.google.cloud.videointelligence.v1.Feature;
import com.google.cloud.videointelligence.v1.LogoRecognitionAnnotation;
import com.google.cloud.videointelligence.v1.NormalizedBoundingBox;
import com.google.cloud.videointelligence.v1.TimestampedObject;
import com.google.cloud.videointelligence.v1.Track;
import com.google.cloud.videointelligence.v1.VideoAnnotationResults;
import com.google.cloud.videointelligence.v1.VideoIntelligenceServiceClient;
import com.google.cloud.videointelligence.v1.VideoSegment;
import com.google.protobuf.ByteString;
import com.google.protobuf.Duration;
import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;

public class LogoDetection {

  public static void detectLogo() throws Exception {
    // TODO(developer): Replace these variables before running the sample.
    String localFilePath = "path/to/your/video.mp4";
    detectLogo(localFilePath);
  }

  public static void detectLogo(String filePath)
      throws IOException, ExecutionException, InterruptedException, TimeoutException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (VideoIntelligenceServiceClient client = VideoIntelligenceServiceClient.create()) {
      // Read file
      Path path = Paths.get(filePath);
      byte[] data = Files.readAllBytes(path);
      // Create the request
      AnnotateVideoRequest request =
          AnnotateVideoRequest.newBuilder()
              .setInputContent(ByteString.copyFrom(data))
              .addFeatures(Feature.LOGO_RECOGNITION)
              .build();

      // asynchronously perform object tracking on videos
      OperationFuture<AnnotateVideoResponse, AnnotateVideoProgress> future =
          client.annotateVideoAsync(request);

      System.out.println("Waiting for operation to complete...");
      // The first result is retrieved because a single video was processed.
      AnnotateVideoResponse response = future.get(300, TimeUnit.SECONDS);
      VideoAnnotationResults annotationResult = response.getAnnotationResults(0);

      // Annotations for list of logos detected, tracked and recognized in video.
      for (LogoRecognitionAnnotation logoRecognitionAnnotation :
          annotationResult.getLogoRecognitionAnnotationsList()) {
        Entity entity = logoRecognitionAnnotation.getEntity();
        // Opaque entity ID. Some IDs may be available in
        // [Google Knowledge Graph Search API](https://developers.google.com/knowledge-graph/).
        System.out.printf("Entity Id : %s\n", entity.getEntityId());
        System.out.printf("Description : %s\n", entity.getDescription());
        // All logo tracks where the recognized logo appears. Each track corresponds to one logo
        // instance appearing in consecutive frames.
        for (Track track : logoRecognitionAnnotation.getTracksList()) {

          // Video segment of a track.
          Duration startTimeOffset = track.getSegment().getStartTimeOffset();
          System.out.printf(
              "\n\tStart Time Offset: %s.%s\n",
              startTimeOffset.getSeconds(), startTimeOffset.getNanos());
          Duration endTimeOffset = track.getSegment().getEndTimeOffset();
          System.out.printf(
              "\tEnd Time Offset: %s.%s\n", endTimeOffset.getSeconds(), endTimeOffset.getNanos());
          System.out.printf("\tConfidence: %s\n", track.getConfidence());

          // The object with timestamp and attributes per frame in the track.
          for (TimestampedObject timestampedObject : track.getTimestampedObjectsList()) {

            // Normalized Bounding box in a frame, where the object is located.
            NormalizedBoundingBox normalizedBoundingBox =
                timestampedObject.getNormalizedBoundingBox();
            System.out.printf("\n\t\tLeft: %s\n", normalizedBoundingBox.getLeft());
            System.out.printf("\t\tTop: %s\n", normalizedBoundingBox.getTop());
            System.out.printf("\t\tRight: %s\n", normalizedBoundingBox.getRight());
            System.out.printf("\t\tBottom: %s\n", normalizedBoundingBox.getBottom());

            // Optional. The attributes of the object in the bounding box.
            for (DetectedAttribute attribute : timestampedObject.getAttributesList()) {
              System.out.printf("\n\t\t\tName: %s\n", attribute.getName());
              System.out.printf("\t\t\tConfidence: %s\n", attribute.getConfidence());
              System.out.printf("\t\t\tValue: %s\n", attribute.getValue());
            }
          }

          // Optional. Attributes in the track level.
          for (DetectedAttribute trackAttribute : track.getAttributesList()) {
            System.out.printf("\n\t\tName : %s\n", trackAttribute.getName());
            System.out.printf("\t\tConfidence : %s\n", trackAttribute.getConfidence());
            System.out.printf("\t\tValue : %s\n", trackAttribute.getValue());
          }
        }

        // All video segments where the recognized logo appears. There might be multiple instances
        // of the same logo class appearing in one VideoSegment.
        for (VideoSegment segment : logoRecognitionAnnotation.getSegmentsList()) {
          System.out.printf(
              "\n\tStart Time Offset : %s.%s\n",
              segment.getStartTimeOffset().getSeconds(), segment.getStartTimeOffset().getNanos());
          System.out.printf(
              "\tEnd Time Offset : %s.%s\n",
              segment.getEndTimeOffset().getSeconds(), segment.getEndTimeOffset().getNanos());
        }
      }
    }
  }
}

Node.js

Untuk mengautentikasi ke Video Intelligence, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

/**
 * TODO(developer): Uncomment these variables before running the sample.
 */
// const localFilePath = 'path/to/your/video.mp4'

// Imports the Google Cloud client libraries
const Video = require('@google-cloud/video-intelligence');
const fs = require('fs');

// Instantiates a client
const client = new Video.VideoIntelligenceServiceClient();

// Performs asynchronous video annotation for logo recognition on a file.
async function detectLogo() {
  const inputContent = fs.readFileSync(localFilePath).toString('base64');

  // Build the request with the input content and logo recognition feature.
  const request = {
    inputContent: inputContent,
    features: ['LOGO_RECOGNITION'],
  };

  // Make the asynchronous request
  const [operation] = await client.annotateVideo(request);

  // Wait for the results
  const [response] = await operation.promise();

  // Get the first response, since we sent only one video.
  const annotationResult = response.annotationResults[0];
  for (const logoRecognitionAnnotation of annotationResult.logoRecognitionAnnotations) {
    const entity = logoRecognitionAnnotation.entity;
    // Opaque entity ID. Some IDs may be available in
    // [Google Knowledge Graph Search API](https://developers.google.com/knowledge-graph/).
    console.log(`Entity Id: ${entity.entityId}`);
    console.log(`Description: ${entity.description}`);

    // All logo tracks where the recognized logo appears.
    // Each track corresponds to one logo instance appearing in consecutive frames.
    for (const track of logoRecognitionAnnotation.tracks) {
      console.log(
        `\n\tStart Time Offset: ${track.segment.startTimeOffset.seconds}.${track.segment.startTimeOffset.nanos}`
      );
      console.log(
        `\tEnd Time Offset: ${track.segment.endTimeOffset.seconds}.${track.segment.endTimeOffset.nanos}`
      );
      console.log(`\tConfidence: ${track.confidence}`);

      // The object with timestamp and attributes per frame in the track.
      for (const timestampedObject of track.timestampedObjects) {
        // Normalized Bounding box in a frame, where the object is located.
        const normalizedBoundingBox = timestampedObject.normalizedBoundingBox;
        console.log(`\n\t\tLeft: ${normalizedBoundingBox.left}`);
        console.log(`\t\tTop: ${normalizedBoundingBox.top}`);
        console.log(`\t\tRight: ${normalizedBoundingBox.right}`);
        console.log(`\t\tBottom: ${normalizedBoundingBox.bottom}`);
        // Optional. The attributes of the object in the bounding box.
        for (const attribute of timestampedObject.attributes) {
          console.log(`\n\t\t\tName: ${attribute.name}`);
          console.log(`\t\t\tConfidence: ${attribute.confidence}`);
          console.log(`\t\t\tValue: ${attribute.value}`);
        }
      }

      // Optional. Attributes in the track level.
      for (const trackAttribute of track.attributes) {
        console.log(`\n\t\tName: ${trackAttribute.name}`);
        console.log(`\t\tConfidence: ${trackAttribute.confidence}`);
        console.log(`\t\tValue: ${trackAttribute.value}`);
      }
    }

    // All video segments where the recognized logo appears.
    // There might be multiple instances of the same logo class appearing in one VideoSegment.
    for (const segment of logoRecognitionAnnotation.segments) {
      console.log(
        `\n\tStart Time Offset: ${segment.startTimeOffset.seconds}.${segment.startTimeOffset.nanos}`
      );
      console.log(
        `\tEnd Time Offset: ${segment.endTimeOffset.seconds}.${segment.endTimeOffset.nanos}`
      );
    }
  }
}

detectLogo();

Python

Untuk mengautentikasi ke Video Intelligence, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, baca Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

import io

from google.cloud import videointelligence

def detect_logo(local_file_path="path/to/your/video.mp4"):
    """Performs asynchronous video annotation for logo recognition on a local file."""

    client = videointelligence.VideoIntelligenceServiceClient()

    with io.open(local_file_path, "rb") as f:
        input_content = f.read()
    features = [videointelligence.Feature.LOGO_RECOGNITION]

    operation = client.annotate_video(
        request={"features": features, "input_content": input_content}
    )

    print("Waiting for operation to complete...")
    response = operation.result()

    # Get the first response, since we sent only one video.
    annotation_result = response.annotation_results[0]

    # Annotations for list of logos detected, tracked and recognized in video.
    for logo_recognition_annotation in annotation_result.logo_recognition_annotations:
        entity = logo_recognition_annotation.entity

        # Opaque entity ID. Some IDs may be available in [Google Knowledge Graph
        # Search API](https://developers.google.com/knowledge-graph/).
        print("Entity Id : {}".format(entity.entity_id))

        print("Description : {}".format(entity.description))

        # All logo tracks where the recognized logo appears. Each track corresponds
        # to one logo instance appearing in consecutive frames.
        for track in logo_recognition_annotation.tracks:
            # Video segment of a track.
            print(
                "\n\tStart Time Offset : {}.{}".format(
                    track.segment.start_time_offset.seconds,
                    track.segment.start_time_offset.microseconds * 1000,
                )
            )
            print(
                "\tEnd Time Offset : {}.{}".format(
                    track.segment.end_time_offset.seconds,
                    track.segment.end_time_offset.microseconds * 1000,
                )
            )
            print("\tConfidence : {}".format(track.confidence))

            # The object with timestamp and attributes per frame in the track.
            for timestamped_object in track.timestamped_objects:
                # Normalized Bounding box in a frame, where the object is located.
                normalized_bounding_box = timestamped_object.normalized_bounding_box
                print("\n\t\tLeft : {}".format(normalized_bounding_box.left))
                print("\t\tTop : {}".format(normalized_bounding_box.top))
                print("\t\tRight : {}".format(normalized_bounding_box.right))
                print("\t\tBottom : {}".format(normalized_bounding_box.bottom))

                # Optional. The attributes of the object in the bounding box.
                for attribute in timestamped_object.attributes:
                    print("\n\t\t\tName : {}".format(attribute.name))
                    print("\t\t\tConfidence : {}".format(attribute.confidence))
                    print("\t\t\tValue : {}".format(attribute.value))

            # Optional. Attributes in the track level.
            for track_attribute in track.attributes:
                print("\n\t\tName : {}".format(track_attribute.name))
                print("\t\tConfidence : {}".format(track_attribute.confidence))
                print("\t\tValue : {}".format(track_attribute.value))

        # All video segments where the recognized logo appears. There might be
        # multiple instances of the same logo class appearing in one VideoSegment.
        for segment in logo_recognition_annotation.segments:
            print(
                "\n\tStart Time Offset : {}.{}".format(
                    segment.start_time_offset.seconds,
                    segment.start_time_offset.microseconds * 1000,
                )
            )
            print(
                "\tEnd Time Offset : {}.{}".format(
                    segment.end_time_offset.seconds,
                    segment.end_time_offset.microseconds * 1000,
                )
            )

Bahasa tambahan

C#: Ikuti Petunjuk penyiapan C# di halaman library klien lalu buka Dokumentasi referensi Video Intelligence untuk .NET.

PHP: Ikuti petunjuk penyiapan PHP di halaman library klien lalu kunjungi Dokumentasi referensi Video Intelligence untuk PHP.

Ruby: Ikuti petunjuk penyiapan Ruby di halaman library klien, lalu buka Dokumentasi referensi Video Intelligence untuk Ruby.