Recognize logos

The Video Intelligence API can detect, track, and recognize the presence of over 100,000 brands and logos in video content.

This page describes how to recognize a logo in a video using the Video Intelligence API.

Annotate a video in Cloud Storage

The following code sample demonstrates how to detect logos in a video in Cloud Storage.

REST

Send the process request

To perform annotation on a local video file, base64-encode the contents of the video file. Include the base64-encoded contents in the inputContent field of the request. For information on how to base64-encode the contents of a video file, see Base64 Encoding.

The following shows how to send a POST request to the videos:annotate method. The example uses the access token for a service account set up for the project using the Google Cloud CLI. For instructions on installing the Google Cloud CLI, setting up a project with a service account, and obtaining an access token, see the Video Intelligence quickstart.

Before using any of the request data, make the following replacements:

  • INPUT_URI: a Cloud Storage bucket that contains the file you want to annotate, including the file name. Must start with gs://.
    For example:
    "inputUri": "gs://cloud-videointelligence-demo/assistant.mp4",
  • PROJECT_NUMBER: The numeric identifier for your Google Cloud project

HTTP method and URL:

POST https://videointelligence.googleapis.com/v1/videos:annotate

Request JSON body:

{
    "inputUri":"INPUT_URI",
    "features": ["LOGO_RECOGNITION"]
}

To send your request, expand one of these options:

You should receive a JSON response similar to the following:

{
  "name": "projects/PROJECT_NUMBER/locations/LOCATION_ID/operations/OPERATION_ID"
}

If the response is successful, the Video Intelligence API returns the name for your operation. The above shows an example of such a response, where: project-number is the number of your project and operation-id is the ID of the long running operation created for the request.

  • PROJECT_NUMBER: the number of your project
  • LOCATION_ID: the Cloud region where annotation should take place. Supported cloud regions are: us-east1, us-west1, europe-west1, asia-east1. If no region is specified, a region will be determined based on video file location.
  • OPERATION_ID: the ID of the long running operation created for the request and provided in the response when you started the operation, for example 12345...

Get the results

To get the results of your request, you send a GET request, using the operation name returned from the call to videos:annotate, as shown in the following example.

Before using any of the request data, make the following replacements:

  • OPERATION_NAME: the name of the operation as returned by Video Intelligence API. The operation name has the format projects/PROJECT_NUMBER/locations/LOCATION_ID/operations/OPERATION_ID
  • PROJECT_NUMBER: The numeric identifier for your Google Cloud project

HTTP method and URL:

GET https://videointelligence.googleapis.com/v1/OPERATION_NAME

To send your request, expand one of these options:

You should receive a JSON response similar to the following:

Download annotation results

Copy the annotation from the source to the destination bucket: (see Copy files and objects)

gcloud storage cp gcs_uri gs://my-bucket

Note: If the output gcs uri is provided by the user, then the annotation is stored in that gcs uri.

Go

To authenticate to Video Intelligence, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.

import (
	"context"
	"fmt"
	"io"
	"time"

	video "cloud.google.com/go/videointelligence/apiv1"
	videopb "cloud.google.com/go/videointelligence/apiv1/videointelligencepb"
	"github.com/golang/protobuf/ptypes"
)

// logoDetectionGCS analyzes a video and extracts logos with their bounding boxes.
func logoDetectionGCS(w io.Writer, gcsURI string) error {
	// gcsURI := "gs://cloud-samples-data/video/googlework_tiny.mp4"

	ctx := context.Background()

	// Creates a client.
	client, err := video.NewClient(ctx)
	if err != nil {
		return fmt.Errorf("video.NewClient: %w", err)
	}
	defer client.Close()

	ctx, cancel := context.WithTimeout(ctx, time.Second*180)
	defer cancel()

	op, err := client.AnnotateVideo(ctx, &videopb.AnnotateVideoRequest{
		InputUri: gcsURI,
		Features: []videopb.Feature{
			videopb.Feature_LOGO_RECOGNITION,
		},
	})
	if err != nil {
		return fmt.Errorf("AnnotateVideo: %w", err)
	}

	resp, err := op.Wait(ctx)
	if err != nil {
		return fmt.Errorf("Wait: %w", err)
	}

	// Only one video was processed, so get the first result.
	result := resp.GetAnnotationResults()[0]

	// Annotations for list of logos detected, tracked and recognized in video.
	for _, annotation := range result.LogoRecognitionAnnotations {
		fmt.Fprintf(w, "Description: %q\n", annotation.Entity.GetDescription())
		// Opaque entity ID. Some IDs may be available in Google Knowledge
		// Graph Search API (https://developers.google.com/knowledge-graph/).
		if len(annotation.Entity.EntityId) > 0 {
			fmt.Fprintf(w, "\tEntity ID: %q\n", annotation.Entity.GetEntityId())
		}

		// All logo tracks where the recognized logo appears. Each track
		// corresponds to one logo instance appearing in consecutive frames.
		for _, track := range annotation.Tracks {
			// Video segment of a track.
			segment := track.GetSegment()
			start, _ := ptypes.Duration(segment.GetStartTimeOffset())
			end, _ := ptypes.Duration(segment.GetEndTimeOffset())
			fmt.Fprintf(w, "\tSegment: %v to %v\n", start, end)
			fmt.Fprintf(w, "\tConfidence: %f\n", track.GetConfidence())

			// The object with timestamp and attributes per frame in the track.
			for _, timestampedObject := range track.TimestampedObjects {
				// Normalized Bounding box in a frame, where the object is
				// located.
				box := timestampedObject.GetNormalizedBoundingBox()
				fmt.Fprintf(w, "\tBounding box position:\n")
				fmt.Fprintf(w, "\t\tleft  : %f\n", box.GetLeft())
				fmt.Fprintf(w, "\t\ttop   : %f\n", box.GetTop())
				fmt.Fprintf(w, "\t\tright : %f\n", box.GetRight())
				fmt.Fprintf(w, "\t\tbottom: %f\n", box.GetBottom())

				// Optional. The attributes of the object in the bounding box.
				for _, attribute := range timestampedObject.Attributes {
					fmt.Fprintf(w, "\t\t\tName: %q\n", attribute.GetName())
					fmt.Fprintf(w, "\t\t\tConfidence: %f\n", attribute.GetConfidence())
					fmt.Fprintf(w, "\t\t\tValue: %q\n", attribute.GetValue())
				}
			}

			// Optional. Attributes in the track level.
			for _, trackAttribute := range track.Attributes {
				fmt.Fprintf(w, "\t\tName: %q\n", trackAttribute.GetName())
				fmt.Fprintf(w, "\t\tConfidence: %f\n", trackAttribute.GetConfidence())
				fmt.Fprintf(w, "\t\tValue: %q\n", trackAttribute.GetValue())
			}
		}

		// All video segments where the recognized logo appears. There might be
		// multiple instances of the same logo class appearing in one VideoSegment.
		for _, segment := range annotation.Segments {
			start, _ := ptypes.Duration(segment.GetStartTimeOffset())
			end, _ := ptypes.Duration(segment.GetEndTimeOffset())
			fmt.Fprintf(w, "\tSegment: %v to %v\n", start, end)
		}
	}

	return nil
}

Java

To authenticate to Video Intelligence, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.


import com.google.api.gax.longrunning.OperationFuture;
import com.google.cloud.videointelligence.v1.AnnotateVideoProgress;
import com.google.cloud.videointelligence.v1.AnnotateVideoRequest;
import com.google.cloud.videointelligence.v1.AnnotateVideoResponse;
import com.google.cloud.videointelligence.v1.DetectedAttribute;
import com.google.cloud.videointelligence.v1.Entity;
import com.google.cloud.videointelligence.v1.Feature;
import com.google.cloud.videointelligence.v1.LogoRecognitionAnnotation;
import com.google.cloud.videointelligence.v1.NormalizedBoundingBox;
import com.google.cloud.videointelligence.v1.TimestampedObject;
import com.google.cloud.videointelligence.v1.Track;
import com.google.cloud.videointelligence.v1.VideoAnnotationResults;
import com.google.cloud.videointelligence.v1.VideoIntelligenceServiceClient;
import com.google.cloud.videointelligence.v1.VideoSegment;
import com.google.protobuf.Duration;
import java.io.IOException;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;

public class LogoDetectionGcs {

  public static void detectLogoGcs() throws Exception {
    // TODO(developer): Replace these variables before running the sample.
    String gcsUri = "gs://YOUR_BUCKET_ID/path/to/your/video.mp4";
    detectLogoGcs(gcsUri);
  }

  public static void detectLogoGcs(String inputUri)
      throws IOException, ExecutionException, InterruptedException, TimeoutException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (VideoIntelligenceServiceClient client = VideoIntelligenceServiceClient.create()) {
      // Create the request
      AnnotateVideoRequest request =
          AnnotateVideoRequest.newBuilder()
              .setInputUri(inputUri)
              .addFeatures(Feature.LOGO_RECOGNITION)
              .build();

      // asynchronously perform object tracking on videos
      OperationFuture<AnnotateVideoResponse, AnnotateVideoProgress> future =
          client.annotateVideoAsync(request);

      System.out.println("Waiting for operation to complete...");
      // The first result is retrieved because a single video was processed.
      AnnotateVideoResponse response = future.get(600, TimeUnit.SECONDS);
      VideoAnnotationResults annotationResult = response.getAnnotationResults(0);

      // Annotations for list of logos detected, tracked and recognized in video.
      for (LogoRecognitionAnnotation logoRecognitionAnnotation :
          annotationResult.getLogoRecognitionAnnotationsList()) {
        Entity entity = logoRecognitionAnnotation.getEntity();
        // Opaque entity ID. Some IDs may be available in
        // [Google Knowledge Graph Search API](https://developers.google.com/knowledge-graph/).
        System.out.printf("Entity Id : %s\n", entity.getEntityId());
        System.out.printf("Description : %s\n", entity.getDescription());
        // All logo tracks where the recognized logo appears. Each track corresponds to one logo
        // instance appearing in consecutive frames.
        for (Track track : logoRecognitionAnnotation.getTracksList()) {

          // Video segment of a track.
          Duration startTimeOffset = track.getSegment().getStartTimeOffset();
          System.out.printf(
              "\n\tStart Time Offset: %s.%s\n",
              startTimeOffset.getSeconds(), startTimeOffset.getNanos());
          Duration endTimeOffset = track.getSegment().getEndTimeOffset();
          System.out.printf(
              "\tEnd Time Offset: %s.%s\n", endTimeOffset.getSeconds(), endTimeOffset.getNanos());
          System.out.printf("\tConfidence: %s\n", track.getConfidence());

          // The object with timestamp and attributes per frame in the track.
          for (TimestampedObject timestampedObject : track.getTimestampedObjectsList()) {

            // Normalized Bounding box in a frame, where the object is located.
            NormalizedBoundingBox normalizedBoundingBox =
                timestampedObject.getNormalizedBoundingBox();
            System.out.printf("\n\t\tLeft: %s\n", normalizedBoundingBox.getLeft());
            System.out.printf("\t\tTop: %s\n", normalizedBoundingBox.getTop());
            System.out.printf("\t\tRight: %s\n", normalizedBoundingBox.getRight());
            System.out.printf("\t\tBottom: %s\n", normalizedBoundingBox.getBottom());

            // Optional. The attributes of the object in the bounding box.
            for (DetectedAttribute attribute : timestampedObject.getAttributesList()) {
              System.out.printf("\n\t\t\tName: %s\n", attribute.getName());
              System.out.printf("\t\t\tConfidence: %s\n", attribute.getConfidence());
              System.out.printf("\t\t\tValue: %s\n", attribute.getValue());
            }
          }

          // Optional. Attributes in the track level.
          for (DetectedAttribute trackAttribute : track.getAttributesList()) {
            System.out.printf("\n\t\tName : %s\n", trackAttribute.getName());
            System.out.printf("\t\tConfidence : %s\n", trackAttribute.getConfidence());
            System.out.printf("\t\tValue : %s\n", trackAttribute.getValue());
          }
        }

        // All video segments where the recognized logo appears. There might be multiple instances
        // of the same logo class appearing in one VideoSegment.
        for (VideoSegment segment : logoRecognitionAnnotation.getSegmentsList()) {
          System.out.printf(
              "\n\tStart Time Offset : %s.%s\n",
              segment.getStartTimeOffset().getSeconds(), segment.getStartTimeOffset().getNanos());
          System.out.printf(
              "\tEnd Time Offset : %s.%s\n",
              segment.getEndTimeOffset().getSeconds(), segment.getEndTimeOffset().getNanos());
        }
      }
    }
  }
}

Node.js

To authenticate to Video Intelligence, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.

/**
 * TODO(developer): Uncomment these variables before running the sample.
 */
// const inputUri = 'gs://cloud-samples-data/video/googlework_short.mp4';

// Imports the Google Cloud client libraries
const Video = require('@google-cloud/video-intelligence');

// Instantiates a client
const client = new Video.VideoIntelligenceServiceClient();

// Performs asynchronous video annotation for logo recognition on a file hosted in GCS.
async function detectLogoGcs() {
  // Build the request with the input uri and logo recognition feature.
  const request = {
    inputUri: inputUri,
    features: ['LOGO_RECOGNITION'],
  };

  // Make the asynchronous request
  const [operation] = await client.annotateVideo(request);

  // Wait for the results
  const [response] = await operation.promise();

  // Get the first response, since we sent only one video.
  const annotationResult = response.annotationResults[0];
  for (const logoRecognitionAnnotation of annotationResult.logoRecognitionAnnotations) {
    const entity = logoRecognitionAnnotation.entity;
    // Opaque entity ID. Some IDs may be available in
    // [Google Knowledge Graph Search API](https://developers.google.com/knowledge-graph/).
    console.log(`Entity Id: ${entity.entityId}`);
    console.log(`Description: ${entity.description}`);

    // All logo tracks where the recognized logo appears.
    // Each track corresponds to one logo instance appearing in consecutive frames.
    for (const track of logoRecognitionAnnotation.tracks) {
      console.log(
        `\n\tStart Time Offset: ${track.segment.startTimeOffset.seconds}.${track.segment.startTimeOffset.nanos}`
      );
      console.log(
        `\tEnd Time Offset: ${track.segment.endTimeOffset.seconds}.${track.segment.endTimeOffset.nanos}`
      );
      console.log(`\tConfidence: ${track.confidence}`);

      // The object with timestamp and attributes per frame in the track.
      for (const timestampedObject of track.timestampedObjects) {
        // Normalized Bounding box in a frame, where the object is located.
        const normalizedBoundingBox = timestampedObject.normalizedBoundingBox;
        console.log(`\n\t\tLeft: ${normalizedBoundingBox.left}`);
        console.log(`\t\tTop: ${normalizedBoundingBox.top}`);
        console.log(`\t\tRight: ${normalizedBoundingBox.right}`);
        console.log(`\t\tBottom: ${normalizedBoundingBox.bottom}`);
        // Optional. The attributes of the object in the bounding box.
        for (const attribute of timestampedObject.attributes) {
          console.log(`\n\t\t\tName: ${attribute.name}`);
          console.log(`\t\t\tConfidence: ${attribute.confidence}`);
          console.log(`\t\t\tValue: ${attribute.value}`);
        }
      }

      // Optional. Attributes in the track level.
      for (const trackAttribute of track.attributes) {
        console.log(`\n\t\tName: ${trackAttribute.name}`);
        console.log(`\t\tConfidence: ${trackAttribute.confidence}`);
        console.log(`\t\tValue: ${trackAttribute.value}`);
      }
    }

    // All video segments where the recognized logo appears.
    // There might be multiple instances of the same logo class appearing in one VideoSegment.
    for (const segment of logoRecognitionAnnotation.segments) {
      console.log(
        `\n\tStart Time Offset: ${segment.startTimeOffset.seconds}.${segment.startTimeOffset.nanos}`
      );
      console.log(
        `\tEnd Time Offset: ${segment.endTimeOffset.seconds}.${segment.endTimeOffset.nanos}`
      );
    }
  }
}

detectLogoGcs();

Python

To authenticate to Video Intelligence, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.


from google.cloud import videointelligence


def detect_logo_gcs(input_uri="gs://YOUR_BUCKET_ID/path/to/your/file.mp4"):
    client = videointelligence.VideoIntelligenceServiceClient()

    features = [videointelligence.Feature.LOGO_RECOGNITION]

    operation = client.annotate_video(
        request={"features": features, "input_uri": input_uri}
    )

    print("Waiting for operation to complete...")
    response = operation.result()

    # Get the first response, since we sent only one video.
    annotation_result = response.annotation_results[0]

    # Annotations for list of logos detected, tracked and recognized in video.
    for logo_recognition_annotation in annotation_result.logo_recognition_annotations:
        entity = logo_recognition_annotation.entity

        # Opaque entity ID. Some IDs may be available in [Google Knowledge Graph
        # Search API](https://developers.google.com/knowledge-graph/).
        print("Entity Id : {}".format(entity.entity_id))

        print("Description : {}".format(entity.description))

        # All logo tracks where the recognized logo appears. Each track corresponds
        # to one logo instance appearing in consecutive frames.
        for track in logo_recognition_annotation.tracks:
            # Video segment of a track.
            print(
                "\n\tStart Time Offset : {}.{}".format(
                    track.segment.start_time_offset.seconds,
                    track.segment.start_time_offset.microseconds * 1000,
                )
            )
            print(
                "\tEnd Time Offset : {}.{}".format(
                    track.segment.end_time_offset.seconds,
                    track.segment.end_time_offset.microseconds * 1000,
                )
            )
            print("\tConfidence : {}".format(track.confidence))

            # The object with timestamp and attributes per frame in the track.
            for timestamped_object in track.timestamped_objects:
                # Normalized Bounding box in a frame, where the object is located.
                normalized_bounding_box = timestamped_object.normalized_bounding_box
                print("\n\t\tLeft : {}".format(normalized_bounding_box.left))
                print("\t\tTop : {}".format(normalized_bounding_box.top))
                print("\t\tRight : {}".format(normalized_bounding_box.right))
                print("\t\tBottom : {}".format(normalized_bounding_box.bottom))

                # Optional. The attributes of the object in the bounding box.
                for attribute in timestamped_object.attributes:
                    print("\n\t\t\tName : {}".format(attribute.name))
                    print("\t\t\tConfidence : {}".format(attribute.confidence))
                    print("\t\t\tValue : {}".format(attribute.value))

            # Optional. Attributes in the track level.
            for track_attribute in track.attributes:
                print("\n\t\tName : {}".format(track_attribute.name))
                print("\t\tConfidence : {}".format(track_attribute.confidence))
                print("\t\tValue : {}".format(track_attribute.value))

        # All video segments where the recognized logo appears. There might be
        # multiple instances of the same logo class appearing in one VideoSegment.
        for segment in logo_recognition_annotation.segments:
            print(
                "\n\tStart Time Offset : {}.{}".format(
                    segment.start_time_offset.seconds,
                    segment.start_time_offset.microseconds * 1000,
                )
            )
            print(
                "\tEnd Time Offset : {}.{}".format(
                    segment.end_time_offset.seconds,
                    segment.end_time_offset.microseconds * 1000,
                )
            )

Additional languages

C#: Please follow the C# setup instructions on the client libraries page and then visit the Video Intelligence reference documentation for .NET.

PHP: Please follow the PHP setup instructions on the client libraries page and then visit the Video Intelligence reference documentation for PHP.

Ruby: Please follow the Ruby setup instructions on the client libraries page and then visit the Video Intelligence reference documentation for Ruby.

Annotate a local video

The following code sample demonstrates how to detect logos in a local video file.

REST

Send video annotation request

To perform annotation on a local video file, be sure to base64-encode the contents of the video file. Include the base64-encoded contents in the inputContent field of the request. For information on how to base64-encode the contents of a video file, see Base64 Encoding.

The following shows how to send a POST request to the videos:annotate method. The example uses the access token for a service account set up for the project using the Google Cloud CLI. For instructions on installing the Google Cloud CLI, setting up a project with a service account, and obtaining an access token, see the Video Intelligence API Quickstart

Before using any of the request data, make the following replacements:

  • "inputContent": BASE64_ENCODED_CONTENT
    For example:
    "UklGRg41AwBBVkkgTElTVAwBAABoZHJsYXZpaDgAAAA1ggAAxPMBAAAAAAAQCAA..."
  • LANGUAGE_CODE: [Optional] See supported languages
  • PROJECT_NUMBER: The numeric identifier for your Google Cloud project

HTTP method and URL:

POST https://videointelligence.googleapis.com/v1/videos:annotate

Request JSON body:

{
  "inputContent": "BASE64_ENCODED_CONTENT",
  "features": ["LOGO_RECOGNITION"],
  "videoContext": {
  }
}

To send your request, expand one of these options:

You should receive a JSON response similar to the following:

{
  "name": "projects/PROJECT_NUMBER/locations/LOCATION_ID/operations/OPERATION_ID"
}

If the response is successful, the Video Intelligence API returns the name for your operation. The above shows an example of such a response, where project-number is the name of your project and operation-id is the ID of the long running operation created for the request.

  • OPERATION_ID: provided in the response when you started the operation, for example 12345...

Get annotation results

To retrieve the result of the operation, make a GET request, using the operation name returned from the call to videos:annotate, as shown in the following example.

Before using any of the request data, make the following replacements:

  • PROJECT_NUMBER: The numeric identifier for your Google Cloud project

HTTP method and URL:

GET https://videointelligence.googleapis.com/v1/OPERATION_NAME

To send your request, expand one of these options:

You should receive a JSON response similar to the following:

Text detection annotations are returned as a textAnnotations list. Note: The done field is returned only when its value is True. It's not included in responses for which the operation has not completed.

Go

To authenticate to Video Intelligence, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.

import (
	"context"
	"fmt"
	"io"
	"os"
	"time"

	video "cloud.google.com/go/videointelligence/apiv1"
	videopb "cloud.google.com/go/videointelligence/apiv1/videointelligencepb"
	"github.com/golang/protobuf/ptypes"
)

// logoDetection analyzes a video and extracts logos with their bounding boxes.
func logoDetection(w io.Writer, filename string) error {
	// filename := "../testdata/googlework_short.mp4"

	ctx := context.Background()

	// Creates a client.
	client, err := video.NewClient(ctx)
	if err != nil {
		return fmt.Errorf("video.NewClient: %w", err)
	}
	defer client.Close()

	ctx, cancel := context.WithTimeout(ctx, time.Second*180)
	defer cancel()

	fileBytes, err := os.ReadFile(filename)
	if err != nil {
		return fmt.Errorf("os.ReadFile: %w", err)
	}

	op, err := client.AnnotateVideo(ctx, &videopb.AnnotateVideoRequest{
		InputContent: fileBytes,
		Features: []videopb.Feature{
			videopb.Feature_LOGO_RECOGNITION,
		},
	})
	if err != nil {
		return fmt.Errorf("AnnotateVideo: %w", err)
	}

	resp, err := op.Wait(ctx)
	if err != nil {
		return fmt.Errorf("Wait: %w", err)
	}

	// Only one video was processed, so get the first result.
	result := resp.GetAnnotationResults()[0]

	// Annotations for list of logos detected, tracked and recognized in video.
	for _, annotation := range result.LogoRecognitionAnnotations {
		fmt.Fprintf(w, "Description: %q\n", annotation.Entity.GetDescription())
		// Opaque entity ID. Some IDs may be available in Google Knowledge
		// Graph Search API (https://developers.google.com/knowledge-graph/).
		if len(annotation.Entity.EntityId) > 0 {
			fmt.Fprintf(w, "\tEntity ID: %q\n", annotation.Entity.GetEntityId())
		}

		// All logo tracks where the recognized logo appears. Each track
		// corresponds to one logo instance appearing in consecutive frames.
		for _, track := range annotation.Tracks {
			// Video segment of a track.
			segment := track.GetSegment()
			start, _ := ptypes.Duration(segment.GetStartTimeOffset())
			end, _ := ptypes.Duration(segment.GetEndTimeOffset())
			fmt.Fprintf(w, "\tSegment: %v to %v\n", start, end)
			fmt.Fprintf(w, "\tConfidence: %f\n", track.GetConfidence())

			// The object with timestamp and attributes per frame in the track.
			for _, timestampedObject := range track.TimestampedObjects {
				// Normalized Bounding box in a frame, where the object is
				// located.
				box := timestampedObject.GetNormalizedBoundingBox()
				fmt.Fprintf(w, "\tBounding box position:\n")
				fmt.Fprintf(w, "\t\tleft  : %f\n", box.GetLeft())
				fmt.Fprintf(w, "\t\ttop   : %f\n", box.GetTop())
				fmt.Fprintf(w, "\t\tright : %f\n", box.GetRight())
				fmt.Fprintf(w, "\t\tbottom: %f\n", box.GetBottom())

				// Optional. The attributes of the object in the bounding box.
				for _, attribute := range timestampedObject.Attributes {
					fmt.Fprintf(w, "\t\t\tName: %q\n", attribute.GetName())
					fmt.Fprintf(w, "\t\t\tConfidence: %f\n", attribute.GetConfidence())
					fmt.Fprintf(w, "\t\t\tValue: %q\n", attribute.GetValue())
				}
			}

			// Optional. Attributes in the track level.
			for _, trackAttribute := range track.Attributes {
				fmt.Fprintf(w, "\t\tName: %q\n", trackAttribute.GetName())
				fmt.Fprintf(w, "\t\tConfidence: %f\n", trackAttribute.GetConfidence())
				fmt.Fprintf(w, "\t\tValue: %q\n", trackAttribute.GetValue())
			}
		}

		// All video segments where the recognized logo appears. There might be
		// multiple instances of the same logo class appearing in one VideoSegment.
		for _, segment := range annotation.Segments {
			start, _ := ptypes.Duration(segment.GetStartTimeOffset())
			end, _ := ptypes.Duration(segment.GetEndTimeOffset())
			fmt.Fprintf(w, "\tSegment: %v to %v\n", start, end)
		}
	}

	return nil
}

Java

To authenticate to Video Intelligence, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.


import com.google.api.gax.longrunning.OperationFuture;
import com.google.cloud.videointelligence.v1.AnnotateVideoProgress;
import com.google.cloud.videointelligence.v1.AnnotateVideoRequest;
import com.google.cloud.videointelligence.v1.AnnotateVideoResponse;
import com.google.cloud.videointelligence.v1.DetectedAttribute;
import com.google.cloud.videointelligence.v1.Entity;
import com.google.cloud.videointelligence.v1.Feature;
import com.google.cloud.videointelligence.v1.LogoRecognitionAnnotation;
import com.google.cloud.videointelligence.v1.NormalizedBoundingBox;
import com.google.cloud.videointelligence.v1.TimestampedObject;
import com.google.cloud.videointelligence.v1.Track;
import com.google.cloud.videointelligence.v1.VideoAnnotationResults;
import com.google.cloud.videointelligence.v1.VideoIntelligenceServiceClient;
import com.google.cloud.videointelligence.v1.VideoSegment;
import com.google.protobuf.ByteString;
import com.google.protobuf.Duration;
import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;

public class LogoDetection {

  public static void detectLogo() throws Exception {
    // TODO(developer): Replace these variables before running the sample.
    String localFilePath = "path/to/your/video.mp4";
    detectLogo(localFilePath);
  }

  public static void detectLogo(String filePath)
      throws IOException, ExecutionException, InterruptedException, TimeoutException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (VideoIntelligenceServiceClient client = VideoIntelligenceServiceClient.create()) {
      // Read file
      Path path = Paths.get(filePath);
      byte[] data = Files.readAllBytes(path);
      // Create the request
      AnnotateVideoRequest request =
          AnnotateVideoRequest.newBuilder()
              .setInputContent(ByteString.copyFrom(data))
              .addFeatures(Feature.LOGO_RECOGNITION)
              .build();

      // asynchronously perform object tracking on videos
      OperationFuture<AnnotateVideoResponse, AnnotateVideoProgress> future =
          client.annotateVideoAsync(request);

      System.out.println("Waiting for operation to complete...");
      // The first result is retrieved because a single video was processed.
      AnnotateVideoResponse response = future.get(300, TimeUnit.SECONDS);
      VideoAnnotationResults annotationResult = response.getAnnotationResults(0);

      // Annotations for list of logos detected, tracked and recognized in video.
      for (LogoRecognitionAnnotation logoRecognitionAnnotation :
          annotationResult.getLogoRecognitionAnnotationsList()) {
        Entity entity = logoRecognitionAnnotation.getEntity();
        // Opaque entity ID. Some IDs may be available in
        // [Google Knowledge Graph Search API](https://developers.google.com/knowledge-graph/).
        System.out.printf("Entity Id : %s\n", entity.getEntityId());
        System.out.printf("Description : %s\n", entity.getDescription());
        // All logo tracks where the recognized logo appears. Each track corresponds to one logo
        // instance appearing in consecutive frames.
        for (Track track : logoRecognitionAnnotation.getTracksList()) {

          // Video segment of a track.
          Duration startTimeOffset = track.getSegment().getStartTimeOffset();
          System.out.printf(
              "\n\tStart Time Offset: %s.%s\n",
              startTimeOffset.getSeconds(), startTimeOffset.getNanos());
          Duration endTimeOffset = track.getSegment().getEndTimeOffset();
          System.out.printf(
              "\tEnd Time Offset: %s.%s\n", endTimeOffset.getSeconds(), endTimeOffset.getNanos());
          System.out.printf("\tConfidence: %s\n", track.getConfidence());

          // The object with timestamp and attributes per frame in the track.
          for (TimestampedObject timestampedObject : track.getTimestampedObjectsList()) {

            // Normalized Bounding box in a frame, where the object is located.
            NormalizedBoundingBox normalizedBoundingBox =
                timestampedObject.getNormalizedBoundingBox();
            System.out.printf("\n\t\tLeft: %s\n", normalizedBoundingBox.getLeft());
            System.out.printf("\t\tTop: %s\n", normalizedBoundingBox.getTop());
            System.out.printf("\t\tRight: %s\n", normalizedBoundingBox.getRight());
            System.out.printf("\t\tBottom: %s\n", normalizedBoundingBox.getBottom());

            // Optional. The attributes of the object in the bounding box.
            for (DetectedAttribute attribute : timestampedObject.getAttributesList()) {
              System.out.printf("\n\t\t\tName: %s\n", attribute.getName());
              System.out.printf("\t\t\tConfidence: %s\n", attribute.getConfidence());
              System.out.printf("\t\t\tValue: %s\n", attribute.getValue());
            }
          }

          // Optional. Attributes in the track level.
          for (DetectedAttribute trackAttribute : track.getAttributesList()) {
            System.out.printf("\n\t\tName : %s\n", trackAttribute.getName());
            System.out.printf("\t\tConfidence : %s\n", trackAttribute.getConfidence());
            System.out.printf("\t\tValue : %s\n", trackAttribute.getValue());
          }
        }

        // All video segments where the recognized logo appears. There might be multiple instances
        // of the same logo class appearing in one VideoSegment.
        for (VideoSegment segment : logoRecognitionAnnotation.getSegmentsList()) {
          System.out.printf(
              "\n\tStart Time Offset : %s.%s\n",
              segment.getStartTimeOffset().getSeconds(), segment.getStartTimeOffset().getNanos());
          System.out.printf(
              "\tEnd Time Offset : %s.%s\n",
              segment.getEndTimeOffset().getSeconds(), segment.getEndTimeOffset().getNanos());
        }
      }
    }
  }
}

Node.js

To authenticate to Video Intelligence, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.

/**
 * TODO(developer): Uncomment these variables before running the sample.
 */
// const localFilePath = 'path/to/your/video.mp4'

// Imports the Google Cloud client libraries
const Video = require('@google-cloud/video-intelligence');
const fs = require('fs');

// Instantiates a client
const client = new Video.VideoIntelligenceServiceClient();

// Performs asynchronous video annotation for logo recognition on a file.
async function detectLogo() {
  const inputContent = fs.readFileSync(localFilePath).toString('base64');

  // Build the request with the input content and logo recognition feature.
  const request = {
    inputContent: inputContent,
    features: ['LOGO_RECOGNITION'],
  };

  // Make the asynchronous request
  const [operation] = await client.annotateVideo(request);

  // Wait for the results
  const [response] = await operation.promise();

  // Get the first response, since we sent only one video.
  const annotationResult = response.annotationResults[0];
  for (const logoRecognitionAnnotation of annotationResult.logoRecognitionAnnotations) {
    const entity = logoRecognitionAnnotation.entity;
    // Opaque entity ID. Some IDs may be available in
    // [Google Knowledge Graph Search API](https://developers.google.com/knowledge-graph/).
    console.log(`Entity Id: ${entity.entityId}`);
    console.log(`Description: ${entity.description}`);

    // All logo tracks where the recognized logo appears.
    // Each track corresponds to one logo instance appearing in consecutive frames.
    for (const track of logoRecognitionAnnotation.tracks) {
      console.log(
        `\n\tStart Time Offset: ${track.segment.startTimeOffset.seconds}.${track.segment.startTimeOffset.nanos}`
      );
      console.log(
        `\tEnd Time Offset: ${track.segment.endTimeOffset.seconds}.${track.segment.endTimeOffset.nanos}`
      );
      console.log(`\tConfidence: ${track.confidence}`);

      // The object with timestamp and attributes per frame in the track.
      for (const timestampedObject of track.timestampedObjects) {
        // Normalized Bounding box in a frame, where the object is located.
        const normalizedBoundingBox = timestampedObject.normalizedBoundingBox;
        console.log(`\n\t\tLeft: ${normalizedBoundingBox.left}`);
        console.log(`\t\tTop: ${normalizedBoundingBox.top}`);
        console.log(`\t\tRight: ${normalizedBoundingBox.right}`);
        console.log(`\t\tBottom: ${normalizedBoundingBox.bottom}`);
        // Optional. The attributes of the object in the bounding box.
        for (const attribute of timestampedObject.attributes) {
          console.log(`\n\t\t\tName: ${attribute.name}`);
          console.log(`\t\t\tConfidence: ${attribute.confidence}`);
          console.log(`\t\t\tValue: ${attribute.value}`);
        }
      }

      // Optional. Attributes in the track level.
      for (const trackAttribute of track.attributes) {
        console.log(`\n\t\tName: ${trackAttribute.name}`);
        console.log(`\t\tConfidence: ${trackAttribute.confidence}`);
        console.log(`\t\tValue: ${trackAttribute.value}`);
      }
    }

    // All video segments where the recognized logo appears.
    // There might be multiple instances of the same logo class appearing in one VideoSegment.
    for (const segment of logoRecognitionAnnotation.segments) {
      console.log(
        `\n\tStart Time Offset: ${segment.startTimeOffset.seconds}.${segment.startTimeOffset.nanos}`
      );
      console.log(
        `\tEnd Time Offset: ${segment.endTimeOffset.seconds}.${segment.endTimeOffset.nanos}`
      );
    }
  }
}

detectLogo();

Python

To authenticate to Video Intelligence, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.

import io

from google.cloud import videointelligence


def detect_logo(local_file_path="path/to/your/video.mp4"):
    """Performs asynchronous video annotation for logo recognition on a local file."""

    client = videointelligence.VideoIntelligenceServiceClient()

    with io.open(local_file_path, "rb") as f:
        input_content = f.read()
    features = [videointelligence.Feature.LOGO_RECOGNITION]

    operation = client.annotate_video(
        request={"features": features, "input_content": input_content}
    )

    print("Waiting for operation to complete...")
    response = operation.result()

    # Get the first response, since we sent only one video.
    annotation_result = response.annotation_results[0]

    # Annotations for list of logos detected, tracked and recognized in video.
    for logo_recognition_annotation in annotation_result.logo_recognition_annotations:
        entity = logo_recognition_annotation.entity

        # Opaque entity ID. Some IDs may be available in [Google Knowledge Graph
        # Search API](https://developers.google.com/knowledge-graph/).
        print("Entity Id : {}".format(entity.entity_id))

        print("Description : {}".format(entity.description))

        # All logo tracks where the recognized logo appears. Each track corresponds
        # to one logo instance appearing in consecutive frames.
        for track in logo_recognition_annotation.tracks:
            # Video segment of a track.
            print(
                "\n\tStart Time Offset : {}.{}".format(
                    track.segment.start_time_offset.seconds,
                    track.segment.start_time_offset.microseconds * 1000,
                )
            )
            print(
                "\tEnd Time Offset : {}.{}".format(
                    track.segment.end_time_offset.seconds,
                    track.segment.end_time_offset.microseconds * 1000,
                )
            )
            print("\tConfidence : {}".format(track.confidence))

            # The object with timestamp and attributes per frame in the track.
            for timestamped_object in track.timestamped_objects:
                # Normalized Bounding box in a frame, where the object is located.
                normalized_bounding_box = timestamped_object.normalized_bounding_box
                print("\n\t\tLeft : {}".format(normalized_bounding_box.left))
                print("\t\tTop : {}".format(normalized_bounding_box.top))
                print("\t\tRight : {}".format(normalized_bounding_box.right))
                print("\t\tBottom : {}".format(normalized_bounding_box.bottom))

                # Optional. The attributes of the object in the bounding box.
                for attribute in timestamped_object.attributes:
                    print("\n\t\t\tName : {}".format(attribute.name))
                    print("\t\t\tConfidence : {}".format(attribute.confidence))
                    print("\t\t\tValue : {}".format(attribute.value))

            # Optional. Attributes in the track level.
            for track_attribute in track.attributes:
                print("\n\t\tName : {}".format(track_attribute.name))
                print("\t\tConfidence : {}".format(track_attribute.confidence))
                print("\t\tValue : {}".format(track_attribute.value))

        # All video segments where the recognized logo appears. There might be
        # multiple instances of the same logo class appearing in one VideoSegment.
        for segment in logo_recognition_annotation.segments:
            print(
                "\n\tStart Time Offset : {}.{}".format(
                    segment.start_time_offset.seconds,
                    segment.start_time_offset.microseconds * 1000,
                )
            )
            print(
                "\tEnd Time Offset : {}.{}".format(
                    segment.end_time_offset.seconds,
                    segment.end_time_offset.microseconds * 1000,
                )
            )

Additional languages

C#: Please follow the C# setup instructions on the client libraries page and then visit the Video Intelligence reference documentation for .NET.

PHP: Please follow the PHP setup instructions on the client libraries page and then visit the Video Intelligence reference documentation for PHP.

Ruby: Please follow the Ruby setup instructions on the client libraries page and then visit the Video Intelligence reference documentation for Ruby.