Détecter des visages

La fonctionnalité de détection des visages de l'API Video Intelligence recherche les visages dans une vidéo.

Détecter des visages à partir d'un fichier dans Cloud Storage

Les exemples suivants illustrent la détection de visages appliquée à un fichier hébergé dans Cloud Storage.

REST

Envoyer une requête d'annotation vidéo

Vous trouverez ci-dessous la procédure à suivre pour envoyer une requête à la méthode videos:annotate. L'exemple utilise Google Cloud CLI pour créer un jeton d'accès. Pour obtenir des instructions sur l'installation de gcloud CLI, consultez le guide de démarrage rapide de l'API Video Intelligence.

Avant d'utiliser les données de requête ci-dessous, effectuez les remplacements suivants :

  • INPUT_URI : bucket Cloud Storage contenant le fichier que vous souhaitez annoter, y compris son nom. Doit commencer par gs://.
    Par exemple : `"inputUri": "gs://cloud-samples-data/video/googlework_short.mp4"`
  • PROJECT_NUMBER: identifiant numérique de votre projet Google Cloud

Méthode HTTP et URL :

POST https://videointelligence.googleapis.com/v1/videos:annotate

Corps JSON de la requête :

{
    "inputUri": "INPUT_URI",
    "features": ["FACE_DETECTION"]
}

Pour envoyer votre requête, développez l'une des options suivantes :

Vous devriez recevoir une réponse JSON de ce type :

Si la réponse aboutit, l'API Video Intelligence renvoie le name de votre opération. Vous trouverez ci-dessous un exemple de réponse de ce type, où :

  • PROJECT_NUMBER : numéro de votre projet.
  • LOCATION_ID : région cloud dans laquelle l'annotation doit avoir lieu. Les régions cloud compatibles sont les suivantes : us-east1, us-west1, europe-west1 et asia-east1. Si aucune région n'est spécifiée, une région est sélectionnée en fonction de l'emplacement du fichier vidéo.
  • OPERATION_ID : ID de l'opération de longue durée créée pour la requête, qui est fourni dans la réponse renvoyée au démarrage de l'opération, par exemple 12345...

Obtenir des résultats d'annotation

Pour récupérer le résultat de l'opération, exécutez une requête GET en utilisant le nom d'opération renvoyé par l'appel à videos:annotate, comme indiqué dans l'exemple suivant.

Avant d'utiliser les données de requête ci-dessous, effectuez les remplacements suivants :

  • OPERATION_NAME: nom de l'opération tel qu'il a été renvoyé par l'API Video Intelligence. Il est au format suivant : projects/PROJECT_NUMBER/locations/LOCATION_ID/operations/OPERATION_ID.
  • PROJECT_NUMBER: identifiant numérique de votre projet Google Cloud

Méthode HTTP et URL :

GET https://videointelligence.googleapis.com/v1/OPERATION_NAME

Pour envoyer votre requête, développez l'une des options suivantes :

Vous devriez recevoir une réponse JSON de ce type :

Les annotations de détection de visages sont renvoyées sous forme de liste faceAnnotations. Remarque : Le champ done n'est renvoyé que lorsque sa valeur est True. Il n'est pas inclus dans les réponses pour lesquelles l'opération n'est pas terminée.

Java

Pour vous authentifier auprès de Video Intelligence, configurez les Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.


import com.google.api.gax.longrunning.OperationFuture;
import com.google.cloud.videointelligence.v1.AnnotateVideoProgress;
import com.google.cloud.videointelligence.v1.AnnotateVideoRequest;
import com.google.cloud.videointelligence.v1.AnnotateVideoResponse;
import com.google.cloud.videointelligence.v1.DetectedAttribute;
import com.google.cloud.videointelligence.v1.FaceDetectionAnnotation;
import com.google.cloud.videointelligence.v1.FaceDetectionConfig;
import com.google.cloud.videointelligence.v1.Feature;
import com.google.cloud.videointelligence.v1.TimestampedObject;
import com.google.cloud.videointelligence.v1.Track;
import com.google.cloud.videointelligence.v1.VideoAnnotationResults;
import com.google.cloud.videointelligence.v1.VideoContext;
import com.google.cloud.videointelligence.v1.VideoIntelligenceServiceClient;
import com.google.cloud.videointelligence.v1.VideoSegment;

public class DetectFacesGcs {

  public static void detectFacesGcs() throws Exception {
    // TODO(developer): Replace these variables before running the sample.
    String gcsUri = "gs://cloud-samples-data/video/googlework_short.mp4";
    detectFacesGcs(gcsUri);
  }

  // Detects faces in a video stored in Google Cloud Storage using the Cloud Video Intelligence API.
  public static void detectFacesGcs(String gcsUri) throws Exception {
    try (VideoIntelligenceServiceClient videoIntelligenceServiceClient =
        VideoIntelligenceServiceClient.create()) {

      FaceDetectionConfig faceDetectionConfig =
          FaceDetectionConfig.newBuilder()
              // Must set includeBoundingBoxes to true to get facial attributes.
              .setIncludeBoundingBoxes(true)
              .setIncludeAttributes(true)
              .build();
      VideoContext videoContext =
          VideoContext.newBuilder().setFaceDetectionConfig(faceDetectionConfig).build();

      AnnotateVideoRequest request =
          AnnotateVideoRequest.newBuilder()
              .setInputUri(gcsUri)
              .addFeatures(Feature.FACE_DETECTION)
              .setVideoContext(videoContext)
              .build();

      // Detects faces in a video
      OperationFuture<AnnotateVideoResponse, AnnotateVideoProgress> future =
          videoIntelligenceServiceClient.annotateVideoAsync(request);

      System.out.println("Waiting for operation to complete...");
      AnnotateVideoResponse response = future.get();

      // Gets annotations for video
      VideoAnnotationResults annotationResult = response.getAnnotationResultsList().get(0);

      // Annotations for list of people detected, tracked and recognized in video.
      for (FaceDetectionAnnotation faceDetectionAnnotation :
          annotationResult.getFaceDetectionAnnotationsList()) {
        System.out.print("Face detected:\n");
        for (Track track : faceDetectionAnnotation.getTracksList()) {
          VideoSegment segment = track.getSegment();
          System.out.printf(
              "\tStart: %d.%.0fs\n",
              segment.getStartTimeOffset().getSeconds(),
              segment.getStartTimeOffset().getNanos() / 1e6);
          System.out.printf(
              "\tEnd: %d.%.0fs\n",
              segment.getEndTimeOffset().getSeconds(), segment.getEndTimeOffset().getNanos() / 1e6);

          // Each segment includes timestamped objects that
          // include characteristics of the face detected.
          TimestampedObject firstTimestampedObject = track.getTimestampedObjects(0);

          for (DetectedAttribute attribute : firstTimestampedObject.getAttributesList()) {
            // Attributes include glasses, headwear, smiling, direction of gaze
            System.out.printf(
                "\tAttribute %s: %s %s\n",
                attribute.getName(), attribute.getValue(), attribute.getConfidence());
          }
        }
      }
    }
  }
}

Node.js

Pour vous authentifier auprès de Video Intelligence, configurez les Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.

/**
 * TODO(developer): Uncomment these variables before running the sample.
 */
// const gcsUri = 'GCS URI of the video to analyze, e.g. gs://my-bucket/my-video.mp4';

// Imports the Google Cloud Video Intelligence library + Node's fs library
const Video = require('@google-cloud/video-intelligence').v1;

// Creates a client
const video = new Video.VideoIntelligenceServiceClient();

async function detectFacesGCS() {
  const request = {
    inputUri: gcsUri,
    features: ['FACE_DETECTION'],
    videoContext: {
      faceDetectionConfig: {
        // Must set includeBoundingBoxes to true to get facial attributes.
        includeBoundingBoxes: true,
        includeAttributes: true,
      },
    },
  };
  // Detects faces in a video
  // We get the first result because we only process 1 video
  const [operation] = await video.annotateVideo(request);
  const results = await operation.promise();
  console.log('Waiting for operation to complete...');

  // Gets annotations for video
  const faceAnnotations =
    results[0].annotationResults[0].faceDetectionAnnotations;

  for (const {tracks} of faceAnnotations) {
    console.log('Face detected:');

    for (const {segment, timestampedObjects} of tracks) {
      console.log(
        `\tStart: ${segment.startTimeOffset.seconds}.` +
          `${(segment.startTimeOffset.nanos / 1e6).toFixed(0)}s`
      );
      console.log(
        `\tEnd: ${segment.endTimeOffset.seconds}.` +
          `${(segment.endTimeOffset.nanos / 1e6).toFixed(0)}s`
      );

      // Each segment includes timestamped objects that
      // include characteristics of the face detected.
      const [firstTimestapedObject] = timestampedObjects;

      for (const {name} of firstTimestapedObject.attributes) {
        // Attributes include 'glasses', 'headwear', 'smiling'.
        console.log(`\tAttribute: ${name}; `);
      }
    }
  }
}

detectFacesGCS();

Python

Pour vous authentifier auprès de Video Intelligence, configurez les Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.

from google.cloud import videointelligence_v1 as videointelligence


def detect_faces(gcs_uri="gs://YOUR_BUCKET_ID/path/to/your/video.mp4"):
    """Detects faces in a video."""

    client = videointelligence.VideoIntelligenceServiceClient()

    # Configure the request
    config = videointelligence.FaceDetectionConfig(
        include_bounding_boxes=True, include_attributes=True
    )
    context = videointelligence.VideoContext(face_detection_config=config)

    # Start the asynchronous request
    operation = client.annotate_video(
        request={
            "features": [videointelligence.Feature.FACE_DETECTION],
            "input_uri": gcs_uri,
            "video_context": context,
        }
    )

    print("\nProcessing video for face detection annotations.")
    result = operation.result(timeout=300)

    print("\nFinished processing.\n")

    # Retrieve the first result, because a single video was processed.
    annotation_result = result.annotation_results[0]

    for annotation in annotation_result.face_detection_annotations:
        print("Face detected:")
        for track in annotation.tracks:
            print(
                "Segment: {}s to {}s".format(
                    track.segment.start_time_offset.seconds
                    + track.segment.start_time_offset.microseconds / 1e6,
                    track.segment.end_time_offset.seconds
                    + track.segment.end_time_offset.microseconds / 1e6,
                )
            )

            # Each segment includes timestamped faces that include
            # characteristics of the face detected.
            # Grab the first timestamped face
            timestamped_object = track.timestamped_objects[0]
            box = timestamped_object.normalized_bounding_box
            print("Bounding box:")
            print("\tleft  : {}".format(box.left))
            print("\ttop   : {}".format(box.top))
            print("\tright : {}".format(box.right))
            print("\tbottom: {}".format(box.bottom))

            # Attributes include glasses, headwear, smiling, direction of gaze
            print("Attributes:")
            for attribute in timestamped_object.attributes:
                print(
                    "\t{}:{} {}".format(
                        attribute.name, attribute.value, attribute.confidence
                    )
                )

Langues supplémentaires

C# : Veuillez suivre les instructions de configuration de C# sur la page des bibliothèques clientes, puis consultez la documentation de référence sur Video Intelligence pour .NET.

PHP : Veuillez suivre les instructions de configuration pour PHP sur la page des bibliothèques clientes, puis consultez la documentation de référence sur Video Intelligence pour PHP.

Ruby : Veuillez suivre les instructions de configuration pour Ruby sur la page des bibliothèques clientes, puis consultez la documentation de référence sur Video Intelligence pour Ruby.

Détecter des visages à partir d'un fichier local

L'exemple suivant utilise la détection de visages pour rechercher des entités dans un fichier vidéo importé depuis votre ordinateur local.

REST

Envoyer la requête de processus

Pour effectuer une détection de visages sur un fichier vidéo local, encodez son contenu en base64. Pour en savoir plus sur l'encodage du contenu d'un fichier vidéo en base64, consultez la page Encoder en base64. Envoyez ensuite une requête POST à la méthode videos:annotate. Incluez le contenu encodé en base64 dans le champ inputContent de la requête et spécifiez la fonctionnalité FACE_DETECTION.

Voici un exemple de requête POST effectuée avec curl. L'exemple utilise Google Cloud CLI pour créer un jeton d'accès. Pour obtenir des instructions sur l'installation de gcloud CLI, consultez le guide de démarrage rapide de l'API Video Intelligence.

Avant d'utiliser les données de requête ci-dessous, effectuez les remplacements suivants :

  • inputContent: Fichier vidéo local au format binaire
    Par exemple: 'AAAAGGZ0eXBtcDQyAAAAAGlzb21tcDQyAAGVYW1vb3YAAABsbXZoZAAAAADWvhlR1r4ZUQABX5ABCOxo AAEAAAEAAAAAAA4...'
  • PROJECT_NUMBER: identifiant numérique de votre projet Google Cloud

Méthode HTTP et URL :

POST https://videointelligence.googleapis.com/v1/videos:annotate

Corps JSON de la requête :

{
    inputContent: "Local video file in binary format",
    "features": ["FACE_DETECTION"]
}

Pour envoyer votre requête, développez l'une des options suivantes :

Vous devriez recevoir une réponse JSON de ce type :

Si la requête aboutit, Video Intelligence renvoie le name correspond à votre opération. L'exemple ci-dessus montre un exemple de ce type de réponse, où project-number est le numéro de votre projet et operation-id est l'ID de l'opération de longue durée créée pour la requête.

{ "name": "us-west1.17122464255125931980" }

Obtenir les résultats

Pour récupérer le résultat de l'opération, envoyez une requête GET au point de terminaison operations et spécifiez le nom de votre opération.

Avant d'utiliser les données de requête ci-dessous, effectuez les remplacements suivants :

  • OPERATION_NAME: nom de l'opération tel qu'il a été renvoyé par l'API Video Intelligence. Il est au format suivant : projects/PROJECT_NUMBER/locations/LOCATION_ID/operations/OPERATION_ID.
  • PROJECT_NUMBER: identifiant numérique de votre projet Google Cloud

Méthode HTTP et URL :

GET https://videointelligence.googleapis.com/v1/OPERATION_NAME

Pour envoyer votre requête, développez l'une des options suivantes :

Vous devriez recevoir une réponse JSON de ce type :

Java

Pour vous authentifier auprès de Video Intelligence, configurez les Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.


import com.google.api.gax.longrunning.OperationFuture;
import com.google.cloud.videointelligence.v1.AnnotateVideoProgress;
import com.google.cloud.videointelligence.v1.AnnotateVideoRequest;
import com.google.cloud.videointelligence.v1.AnnotateVideoResponse;
import com.google.cloud.videointelligence.v1.DetectedAttribute;
import com.google.cloud.videointelligence.v1.FaceDetectionAnnotation;
import com.google.cloud.videointelligence.v1.FaceDetectionConfig;
import com.google.cloud.videointelligence.v1.Feature;
import com.google.cloud.videointelligence.v1.TimestampedObject;
import com.google.cloud.videointelligence.v1.Track;
import com.google.cloud.videointelligence.v1.VideoAnnotationResults;
import com.google.cloud.videointelligence.v1.VideoContext;
import com.google.cloud.videointelligence.v1.VideoIntelligenceServiceClient;
import com.google.cloud.videointelligence.v1.VideoSegment;
import com.google.protobuf.ByteString;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;

public class DetectFaces {

  public static void detectFaces() throws Exception {
    // TODO(developer): Replace these variables before running the sample.
    String localFilePath = "resources/googlework_short.mp4";
    detectFaces(localFilePath);
  }

  // Detects faces in a video stored in a local file using the Cloud Video Intelligence API.
  public static void detectFaces(String localFilePath) throws Exception {
    try (VideoIntelligenceServiceClient videoIntelligenceServiceClient =
        VideoIntelligenceServiceClient.create()) {
      // Reads a local video file and converts it to base64.
      Path path = Paths.get(localFilePath);
      byte[] data = Files.readAllBytes(path);
      ByteString inputContent = ByteString.copyFrom(data);

      FaceDetectionConfig faceDetectionConfig =
          FaceDetectionConfig.newBuilder()
              // Must set includeBoundingBoxes to true to get facial attributes.
              .setIncludeBoundingBoxes(true)
              .setIncludeAttributes(true)
              .build();
      VideoContext videoContext =
          VideoContext.newBuilder().setFaceDetectionConfig(faceDetectionConfig).build();

      AnnotateVideoRequest request =
          AnnotateVideoRequest.newBuilder()
              .setInputContent(inputContent)
              .addFeatures(Feature.FACE_DETECTION)
              .setVideoContext(videoContext)
              .build();

      // Detects faces in a video
      OperationFuture<AnnotateVideoResponse, AnnotateVideoProgress> future =
          videoIntelligenceServiceClient.annotateVideoAsync(request);

      System.out.println("Waiting for operation to complete...");
      AnnotateVideoResponse response = future.get();

      // Gets annotations for video
      VideoAnnotationResults annotationResult = response.getAnnotationResultsList().get(0);

      // Annotations for list of faces detected, tracked and recognized in video.
      for (FaceDetectionAnnotation faceDetectionAnnotation :
          annotationResult.getFaceDetectionAnnotationsList()) {
        System.out.print("Face detected:\n");
        for (Track track : faceDetectionAnnotation.getTracksList()) {
          VideoSegment segment = track.getSegment();
          System.out.printf(
              "\tStart: %d.%.0fs\n",
              segment.getStartTimeOffset().getSeconds(),
              segment.getStartTimeOffset().getNanos() / 1e6);
          System.out.printf(
              "\tEnd: %d.%.0fs\n",
              segment.getEndTimeOffset().getSeconds(), segment.getEndTimeOffset().getNanos() / 1e6);

          // Each segment includes timestamped objects that
          // include characteristics of the face detected.
          TimestampedObject firstTimestampedObject = track.getTimestampedObjects(0);

          for (DetectedAttribute attribute : firstTimestampedObject.getAttributesList()) {
            // Attributes include glasses, headwear, smiling, direction of gaze
            System.out.printf(
                "\tAttribute %s: %s %s\n",
                attribute.getName(), attribute.getValue(), attribute.getConfidence());
          }
        }
      }
    }
  }
}

Node.js

Pour vous authentifier auprès de Video Intelligence, configurez les Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.

/**
 * TODO(developer): Uncomment these variables before running the sample.
 */
// const path = 'Local file to analyze, e.g. ./my-file.mp4';

// Imports the Google Cloud Video Intelligence library + Node's fs library
const Video = require('@google-cloud/video-intelligence').v1;
const fs = require('fs');

// Creates a client
const video = new Video.VideoIntelligenceServiceClient();

// Reads a local video file and converts it to base64
const file = fs.readFileSync(path);
const inputContent = file.toString('base64');

async function detectFaces() {
  const request = {
    inputContent: inputContent,
    features: ['FACE_DETECTION'],
    videoContext: {
      faceDetectionConfig: {
        // Must set includeBoundingBoxes to true to get facial attributes.
        includeBoundingBoxes: true,
        includeAttributes: true,
      },
    },
  };
  // Detects faces in a video
  // We get the first result because we only process 1 video
  const [operation] = await video.annotateVideo(request);
  const results = await operation.promise();
  console.log('Waiting for operation to complete...');

  // Gets annotations for video
  const faceAnnotations =
    results[0].annotationResults[0].faceDetectionAnnotations;
  for (const {tracks} of faceAnnotations) {
    console.log('Face detected:');
    for (const {segment, timestampedObjects} of tracks) {
      console.log(
        `\tStart: ${segment.startTimeOffset.seconds}` +
          `.${(segment.startTimeOffset.nanos / 1e6).toFixed(0)}s`
      );
      console.log(
        `\tEnd: ${segment.endTimeOffset.seconds}.` +
          `${(segment.endTimeOffset.nanos / 1e6).toFixed(0)}s`
      );

      // Each segment includes timestamped objects that
      // include characteristics of the face detected.
      const [firstTimestapedObject] = timestampedObjects;

      for (const {name} of firstTimestapedObject.attributes) {
        // Attributes include 'glasses', 'headwear', 'smiling'.
        console.log(`\tAttribute: ${name}; `);
      }
    }
  }
}

detectFaces();

Python

Pour vous authentifier auprès de Video Intelligence, configurez les Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.

import io

from google.cloud import videointelligence_v1 as videointelligence


def detect_faces(local_file_path="path/to/your/video-file.mp4"):
    """Detects faces in a video from a local file."""

    client = videointelligence.VideoIntelligenceServiceClient()

    with io.open(local_file_path, "rb") as f:
        input_content = f.read()

    # Configure the request
    config = videointelligence.FaceDetectionConfig(
        include_bounding_boxes=True, include_attributes=True
    )
    context = videointelligence.VideoContext(face_detection_config=config)

    # Start the asynchronous request
    operation = client.annotate_video(
        request={
            "features": [videointelligence.Feature.FACE_DETECTION],
            "input_content": input_content,
            "video_context": context,
        }
    )

    print("\nProcessing video for face detection annotations.")
    result = operation.result(timeout=300)

    print("\nFinished processing.\n")

    # Retrieve the first result, because a single video was processed.
    annotation_result = result.annotation_results[0]

    for annotation in annotation_result.face_detection_annotations:
        print("Face detected:")
        for track in annotation.tracks:
            print(
                "Segment: {}s to {}s".format(
                    track.segment.start_time_offset.seconds
                    + track.segment.start_time_offset.microseconds / 1e6,
                    track.segment.end_time_offset.seconds
                    + track.segment.end_time_offset.microseconds / 1e6,
                )
            )

            # Each segment includes timestamped faces that include
            # characteristics of the face detected.
            # Grab the first timestamped face
            timestamped_object = track.timestamped_objects[0]
            box = timestamped_object.normalized_bounding_box
            print("Bounding box:")
            print("\tleft  : {}".format(box.left))
            print("\ttop   : {}".format(box.top))
            print("\tright : {}".format(box.right))
            print("\tbottom: {}".format(box.bottom))

            # Attributes include glasses, headwear, smiling, direction of gaze
            print("Attributes:")
            for attribute in timestamped_object.attributes:
                print(
                    "\t{}:{} {}".format(
                        attribute.name, attribute.value, attribute.confidence
                    )
                )

Langues supplémentaires

C# : Veuillez suivre les instructions de configuration de C# sur la page des bibliothèques clientes, puis consultez la documentation de référence sur Video Intelligence pour .NET.

PHP : Veuillez suivre les instructions de configuration pour PHP sur la page des bibliothèques clientes, puis consultez la documentation de référence sur Video Intelligence pour PHP.

Ruby : Veuillez suivre les instructions de configuration pour Ruby sur la page des bibliothèques clientes, puis consultez la documentation de référence sur Video Intelligence pour Ruby.