클라이언트 라이브러리를 사용하여 동영상에 주석 추가

이 빠른 시작에서는 Video Intelligence API를 소개합니다. 이 빠른 시작에서는 Google Cloud 프로젝트 및 승인을 설정한 후 Video Intelligence에 동영상 주석을 작성하도록 요청합니다.

시작하기 전에

  1. Google Cloud 계정에 로그인합니다. Google Cloud를 처음 사용하는 경우 계정을 만들고 Google 제품의 실제 성능을 평가해 보세요. 신규 고객에게는 워크로드를 실행, 테스트, 배포하는 데 사용할 수 있는 $300의 무료 크레딧이 제공됩니다.
  2. In the Google Cloud console, on the project selector page, select or create a Google Cloud project.

    Go to project selector

  3. Google Cloud 프로젝트에 결제가 사용 설정되어 있는지 확인합니다.

  4. Enable the Cloud Video Intelligence API.

    Enable the API

  5. Install the Google Cloud CLI.
  6. To initialize the gcloud CLI, run the following command:

    gcloud init
  7. In the Google Cloud console, on the project selector page, select or create a Google Cloud project.

    Go to project selector

  8. Google Cloud 프로젝트에 결제가 사용 설정되어 있는지 확인합니다.

  9. Enable the Cloud Video Intelligence API.

    Enable the API

  10. Install the Google Cloud CLI.
  11. To initialize the gcloud CLI, run the following command:

    gcloud init

클라이언트 라이브러리 설치

Go

go get cloud.google.com/go/videointelligence/apiv1

Java

Node.js

라이브러리를 설치하기 전에 Node.js 개발을 위한 환경이 준비됐는지 확인하세요.

npm install --save @google-cloud/video-intelligence

Python

라이브러리를 설치하기 전에 Python 개발을 위한 환경이 준비됐는지 확인하세요.

pip install --upgrade google-cloud-videointelligence

추가 언어

C#: 클라이언트 라이브러리 페이지의 C# 설정 안내를 따른 다음 .NET용 Video Intelligence 참고 문서를 참조하세요.

PHP: 클라이언트 라이브러리 페이지의 PHP 설정 안내를 따른 다음 PHP용 Video Intelligence 참고 문서를 참조하세요.

Ruby: 클라이언트 라이브러리 페이지의 Ruby 설정 안내를 따른 다음 Ruby용 Video Intelligence 참고 문서를 참조하세요.

인증 설정

  1. Install the Google Cloud CLI, then initialize it by running the following command:

    gcloud init
  2. If you're using a local shell, then create local authentication credentials for your user account:

    gcloud auth application-default login

    You don't need to do this if you're using Cloud Shell.

    로그인 화면이 표시됩니다. 로그인하면 사용자 인증 정보는 ADC에서 사용하는 로컬 사용자 인증 정보 파일에 저장됩니다.

라벨 인식

이제 Video Intelligence API를 사용하여 동영상 또는 동영상 세그먼트에서 라벨 인식과 같이 정보를 요청할 수 있습니다. 다음 코드를 실행하여 첫 번째 동영상 라벨 인식 요청을 수행하세요.

Go


// Sample video_quickstart uses the Google Cloud Video Intelligence API to label a video.
package main

import (
	"context"
	"fmt"
	"log"

	"github.com/golang/protobuf/ptypes"

	video "cloud.google.com/go/videointelligence/apiv1"
	videopb "cloud.google.com/go/videointelligence/apiv1/videointelligencepb"
)

func main() {
	ctx := context.Background()

	// Creates a client.
	client, err := video.NewClient(ctx)
	if err != nil {
		log.Fatalf("Failed to create client: %v", err)
	}
	defer client.Close()

	op, err := client.AnnotateVideo(ctx, &videopb.AnnotateVideoRequest{
		InputUri: "gs://cloud-samples-data/video/cat.mp4",
		Features: []videopb.Feature{
			videopb.Feature_LABEL_DETECTION,
		},
	})
	if err != nil {
		log.Fatalf("Failed to start annotation job: %v", err)
	}

	resp, err := op.Wait(ctx)
	if err != nil {
		log.Fatalf("Failed to annotate: %v", err)
	}

	// Only one video was processed, so get the first result.
	result := resp.GetAnnotationResults()[0]

	for _, annotation := range result.SegmentLabelAnnotations {
		fmt.Printf("Description: %s\n", annotation.Entity.Description)

		for _, category := range annotation.CategoryEntities {
			fmt.Printf("\tCategory: %s\n", category.Description)
		}

		for _, segment := range annotation.Segments {
			start, _ := ptypes.Duration(segment.Segment.StartTimeOffset)
			end, _ := ptypes.Duration(segment.Segment.EndTimeOffset)
			fmt.Printf("\tSegment: %s to %s\n", start, end)
			fmt.Printf("\tConfidence: %v\n", segment.Confidence)
		}
	}
}

Java


import com.google.api.gax.longrunning.OperationFuture;
import com.google.cloud.videointelligence.v1.AnnotateVideoProgress;
import com.google.cloud.videointelligence.v1.AnnotateVideoRequest;
import com.google.cloud.videointelligence.v1.AnnotateVideoResponse;
import com.google.cloud.videointelligence.v1.Entity;
import com.google.cloud.videointelligence.v1.Feature;
import com.google.cloud.videointelligence.v1.LabelAnnotation;
import com.google.cloud.videointelligence.v1.LabelSegment;
import com.google.cloud.videointelligence.v1.VideoAnnotationResults;
import com.google.cloud.videointelligence.v1.VideoIntelligenceServiceClient;
import java.util.List;

public class QuickstartSample {

  /** Demonstrates using the video intelligence client to detect labels in a video file. */
  public static void main(String[] args) throws Exception {
    // Instantiate a video intelligence client
    try (VideoIntelligenceServiceClient client = VideoIntelligenceServiceClient.create()) {
      // The Google Cloud Storage path to the video to annotate.
      String gcsUri = "gs://cloud-samples-data/video/cat.mp4";

      // Create an operation that will contain the response when the operation completes.
      AnnotateVideoRequest request =
          AnnotateVideoRequest.newBuilder()
              .setInputUri(gcsUri)
              .addFeatures(Feature.LABEL_DETECTION)
              .build();

      OperationFuture<AnnotateVideoResponse, AnnotateVideoProgress> response =
          client.annotateVideoAsync(request);

      System.out.println("Waiting for operation to complete...");

      List<VideoAnnotationResults> results = response.get().getAnnotationResultsList();
      if (results.isEmpty()) {
        System.out.println("No labels detected in " + gcsUri);
        return;
      }
      for (VideoAnnotationResults result : results) {
        System.out.println("Labels:");
        // get video segment label annotations
        for (LabelAnnotation annotation : result.getSegmentLabelAnnotationsList()) {
          System.out.println(
              "Video label description : " + annotation.getEntity().getDescription());
          // categories
          for (Entity categoryEntity : annotation.getCategoryEntitiesList()) {
            System.out.println("Label Category description : " + categoryEntity.getDescription());
          }
          // segments
          for (LabelSegment segment : annotation.getSegmentsList()) {
            double startTime =
                segment.getSegment().getStartTimeOffset().getSeconds()
                    + segment.getSegment().getStartTimeOffset().getNanos() / 1e9;
            double endTime =
                segment.getSegment().getEndTimeOffset().getSeconds()
                    + segment.getSegment().getEndTimeOffset().getNanos() / 1e9;
            System.out.printf("Segment location : %.3f:%.3f\n", startTime, endTime);
            System.out.println("Confidence : " + segment.getConfidence());
          }
        }
      }
    }
  }
}

Node.js

예시를 실행하기 전에 Node.js 개발 환경이 준비됐는지 확인합니다.

// Imports the Google Cloud Video Intelligence library
const videoIntelligence = require('@google-cloud/video-intelligence');

// Creates a client
const client = new videoIntelligence.VideoIntelligenceServiceClient();

// The GCS uri of the video to analyze
const gcsUri = 'gs://cloud-samples-data/video/cat.mp4';

// Construct request
const request = {
  inputUri: gcsUri,
  features: ['LABEL_DETECTION'],
};

// Execute request
const [operation] = await client.annotateVideo(request);

console.log(
  'Waiting for operation to complete... (this may take a few minutes)'
);

const [operationResult] = await operation.promise();

// Gets annotations for video
const annotations = operationResult.annotationResults[0];

// Gets labels for video from its annotations
const labels = annotations.segmentLabelAnnotations;
labels.forEach(label => {
  console.log(`Label ${label.entity.description} occurs at:`);
  label.segments.forEach(segment => {
    segment = segment.segment;
    console.log(
      `\tStart: ${segment.startTimeOffset.seconds}` +
        `.${(segment.startTimeOffset.nanos / 1e6).toFixed(0)}s`
    );
    console.log(
      `\tEnd: ${segment.endTimeOffset.seconds}.` +
        `${(segment.endTimeOffset.nanos / 1e6).toFixed(0)}s`
    );
  });
});

Python

예시를 실행하기 전에 Python 개발 환경이 준비됐는지 확인합니다.

from google.cloud import videointelligence

video_client = videointelligence.VideoIntelligenceServiceClient()
features = [videointelligence.Feature.LABEL_DETECTION]
operation = video_client.annotate_video(
    request={
        "features": features,
        "input_uri": "gs://cloud-samples-data/video/cat.mp4",
    }
)
print("\nProcessing video for label annotations:")

result = operation.result(timeout=180)
print("\nFinished processing.")

# first result is retrieved because a single video was processed
segment_labels = result.annotation_results[0].segment_label_annotations
for i, segment_label in enumerate(segment_labels):
    print("Video label description: {}".format(segment_label.entity.description))
    for category_entity in segment_label.category_entities:
        print(
            "\tLabel category description: {}".format(category_entity.description)
        )

    for i, segment in enumerate(segment_label.segments):
        start_time = (
            segment.segment.start_time_offset.seconds
            + segment.segment.start_time_offset.microseconds / 1e6
        )
        end_time = (
            segment.segment.end_time_offset.seconds
            + segment.segment.end_time_offset.microseconds / 1e6
        )
        positions = "{}s to {}s".format(start_time, end_time)
        confidence = segment.confidence
        print("\tSegment {}: {}".format(i, positions))
        print("\tConfidence: {}".format(confidence))
    print("\n")

추가 언어

C#: 클라이언트 라이브러리 페이지의 C# 설정 안내를 따른 다음 .NET용 Video Intelligence 참고 문서를 참조하세요.

PHP: 클라이언트 라이브러리 페이지의 PHP 설정 안내를 따른 다음 PHP용 Video Intelligence 참고 문서를 참조하세요.

Ruby: 클라이언트 라이브러리 페이지의 Ruby 설정 안내를 따른 다음 Ruby용 Video Intelligence 참고 문서를 참조하세요.

축하합니다. 첫 번째 요청을 Video Intelligence API에 보냈습니다.

어땠나요?

삭제

이 페이지에서 사용한 리소스 비용이 Google Cloud 계정에 청구되지 않도록 하려면 다음 단계를 수행합니다.

다음 단계