Resumir um arquivo de vídeo com áudio com o Gemini Multimodal

Este exemplo mostra como resumir um arquivo de vídeo com áudio e retornar capítulos com marcações de tempo.

Mais informações

Para ver a documentação detalhada que inclui este exemplo de código, consulte:

Exemplo de código

Go

Antes de testar esse exemplo, siga as instruções de configuração para Go no Guia de início rápido da Vertex AI sobre como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vertex AI para Go.

Para autenticar na Vertex AI, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

import (
	"context"
	"fmt"
	"io"

	genai "google.golang.org/genai"
)

// generateWithVideo shows how to generate text using a video input.
func generateWithVideo(w io.Writer) error {
	ctx := context.Background()

	client, err := genai.NewClient(ctx, &genai.ClientConfig{
		HTTPOptions: genai.HTTPOptions{APIVersion: "v1"},
	})
	if err != nil {
		return fmt.Errorf("failed to create genai client: %w", err)
	}

	modelName := "gemini-2.5-flash"
	contents := []*genai.Content{
		{Parts: []*genai.Part{
			{Text: `Analyze the provided video file, including its audio.
Summarize the main points of the video concisely.
Create a chapter breakdown with timestamps for key sections or topics discussed.`},
			{FileData: &genai.FileData{
				FileURI:  "gs://cloud-samples-data/generative-ai/video/pixel8.mp4",
				MIMEType: "video/mp4",
			}},
		},
			Role: "user"},
	}

	resp, err := client.Models.GenerateContent(ctx, modelName, contents, nil)
	if err != nil {
		return fmt.Errorf("failed to generate content: %w", err)
	}

	respText := resp.Text()

	fmt.Fprintln(w, respText)

	// Example response:
	// Here's an analysis of the provided video file:
	//
	// **Summary**
	//
	// The video features Saeka Shimada, a photographer in Tokyo, who uses the new Pixel phone ...
	//
	// **Chapter Breakdown**
	//
	// *   **0:00-0:05**: Introduction to Saeka Shimada and her work as a photographer in Tokyo.
	// ...

	return nil
}

Java

Antes de testar esse exemplo, siga as instruções de configuração para Java no Guia de início rápido da Vertex AI sobre como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vertex AI para Java.

Para autenticar na Vertex AI, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.


import com.google.genai.Client;
import com.google.genai.types.Content;
import com.google.genai.types.GenerateContentResponse;
import com.google.genai.types.HttpOptions;
import com.google.genai.types.Part;

public class TextGenerationWithVideo {

  public static void main(String[] args) {
    // TODO(developer): Replace these variables before running the sample.
    String modelId = "gemini-2.5-flash";
    String prompt =
        " Analyze the provided video file, including its audio.\n"
            + " Summarize the main points of the video concisely.\n"
            + " Create a chapter breakdown with timestamps for key sections or topics discussed.";
    generateContent(modelId, prompt);
  }

  // Generates text with video input
  public static String generateContent(String modelId, String prompt) {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests.
    try (Client client =
        Client.builder()
            .location("global")
            .vertexAI(true)
            .httpOptions(HttpOptions.builder().apiVersion("v1").build())
            .build()) {

      GenerateContentResponse response =
          client.models.generateContent(
              modelId,
              Content.fromParts(
                  Part.fromText(prompt),
                  Part.fromUri(
                      "gs://cloud-samples-data/generative-ai/video/pixel8.mp4", "video/mp4")),
              null);

      System.out.print(response.text());
      // Example response:
      // Here's a breakdown of the video:
      //
      // **Summary:**
      //
      // Saeka Shimada, a photographer in Tokyo, uses the Google Pixel 8 Pro's "Video Boost" feature
      // to ...
      //
      // **Chapter Breakdown with Timestamps:**
      //
      // * **[00:00-00:12] Introduction & Tokyo at Night:** Saeka Shimada introduces herself ...
      return response.text();
    }
  }
}

Node.js

Antes de testar esse exemplo, siga as instruções de configuração para Node.js no Guia de início rápido da Vertex AI sobre como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vertex AI para Node.js.

Para autenticar na Vertex AI, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

const {GoogleGenAI} = require('@google/genai');

const GOOGLE_CLOUD_PROJECT = process.env.GOOGLE_CLOUD_PROJECT;
const GOOGLE_CLOUD_LOCATION = process.env.GOOGLE_CLOUD_LOCATION || 'global';

async function generateContent(
  projectId = GOOGLE_CLOUD_PROJECT,
  location = GOOGLE_CLOUD_LOCATION
) {
  const ai = new GoogleGenAI({
    vertexai: true,
    project: projectId,
    location: location,
  });

  const prompt = `
  Analyze the provided video file, including its audio.
  Summarize the main points of the video concisely.
  Create a chapter breakdown with timestamps for key sections or topics discussed.
 `;

  const video = {
    fileData: {
      fileUri: 'gs://cloud-samples-data/generative-ai/video/pixel8.mp4',
      mimeType: 'video/mp4',
    },
  };

  const response = await ai.models.generateContent({
    model: 'gemini-2.5-flash',
    contents: [video, prompt],
  });

  console.log(response.text);

  return response.text;
}

Python

Antes de testar esse exemplo, siga as instruções de configuração para Python no Guia de início rápido da Vertex AI sobre como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vertex AI para Python.

Para autenticar na Vertex AI, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

from google import genai
from google.genai.types import HttpOptions, Part

client = genai.Client(http_options=HttpOptions(api_version="v1"))
prompt = """
Analyze the provided video file, including its audio.
Summarize the main points of the video concisely.
Create a chapter breakdown with timestamps for key sections or topics discussed.
"""
response = client.models.generate_content(
    model="gemini-2.5-flash",
    contents=[
        Part.from_uri(
            file_uri="gs://cloud-samples-data/generative-ai/video/pixel8.mp4",
            mime_type="video/mp4",
        ),
        prompt,
    ],
)

print(response.text)
# Example response:
# Here's a breakdown of the video:
#
# **Summary:**
#
# Saeka Shimada, a photographer in Tokyo, uses the Google Pixel 8 Pro's "Video Boost" feature to ...
#
# **Chapter Breakdown with Timestamps:**
#
# * **[00:00-00:12] Introduction & Tokyo at Night:** Saeka Shimada introduces herself ...
# ...

A seguir

Para pesquisar e filtrar exemplos de código de outros Google Cloud produtos, consulte a Google Cloud pesquisa de exemplos de código.