Gerar texto usando imagens de um local e do Google Cloud Storage

Este exemplo demonstra como gerar texto usando uma imagem local e uma imagem no Google Cloud Storage.

Mais informações

Para ver a documentação detalhada que inclui este exemplo de código, consulte:

Exemplo de código

Go

Antes de testar esse exemplo, siga as instruções de configuração para Go no Guia de início rápido da Vertex AI sobre como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vertex AI para Go.

Para autenticar na Vertex AI, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

import (
	"context"
	"fmt"
	"io"
	"os"

	genai "google.golang.org/genai"
)

// generateWithMultiImg shows how to generate text using multiple image inputs.
func generateWithMultiImg(w io.Writer) error {
	ctx := context.Background()

	client, err := genai.NewClient(ctx, &genai.ClientConfig{
		HTTPOptions: genai.HTTPOptions{APIVersion: "v1"},
	})
	if err != nil {
		return fmt.Errorf("failed to create genai client: %w", err)
	}

	// TODO(Developer): Update the path to file (image source:
	//   https://storage.googleapis.com/cloud-samples-data/generative-ai/image/latte.jpg )
	imageBytes, err := os.ReadFile("./latte.jpg")
	if err != nil {
		return fmt.Errorf("failed to read image: %w", err)
	}

	contents := []*genai.Content{
		{Parts: []*genai.Part{
			{Text: "Write an advertising jingle based on the items in both images."},
			{FileData: &genai.FileData{
				// Image source: https://storage.googleapis.com/cloud-samples-data/generative-ai/image/scones.jpg
				FileURI:  "gs://cloud-samples-data/generative-ai/image/scones.jpg",
				MIMEType: "image/jpeg",
			}},
			{InlineData: &genai.Blob{
				Data:     imageBytes,
				MIMEType: "image/jpeg",
			}},
		}},
	}
	modelName := "gemini-2.5-flash"

	resp, err := client.Models.GenerateContent(ctx, modelName, contents, nil)
	if err != nil {
		return fmt.Errorf("failed to generate content: %w", err)
	}

	respText := resp.Text()

	fmt.Fprintln(w, respText)

	// Example response:
	// Okay, here's an advertising jingle inspired by the blueberry scones, coffee, flowers, chocolate cake, and latte:
	//
	// (Upbeat, jazzy music)
	// ...

	return nil
}

Java

Antes de testar esse exemplo, siga as instruções de configuração para Java no Guia de início rápido da Vertex AI sobre como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vertex AI para Java.

Para autenticar na Vertex AI, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.


import com.google.genai.Client;
import com.google.genai.types.Content;
import com.google.genai.types.GenerateContentResponse;
import com.google.genai.types.HttpOptions;
import com.google.genai.types.Part;
import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Paths;

public class TextGenerationWithMultiImage {

  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String modelId = "gemini-2.5-flash";
    // Content from Google Cloud Storage
    String gcsFileImagePath = "gs://cloud-samples-data/generative-ai/image/scones.jpg";
    String localImageFilePath = "resources/latte.jpg";
    generateContent(modelId, gcsFileImagePath, localImageFilePath);
  }

  // Generates text with multiple images
  public static String generateContent(
      String modelId, String gcsFileImagePath, String localImageFilePath) throws IOException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests.
    try (Client client =
        Client.builder()
            .location("global")
            .vertexAI(true)
            .httpOptions(HttpOptions.builder().apiVersion("v1").build())
            .build()) {

      // Read content from a local file.
      byte[] localFileImgBytes = Files.readAllBytes(Paths.get(localImageFilePath));

      GenerateContentResponse response =
          client.models.generateContent(
              modelId,
              Content.fromParts(
                  Part.fromText("Generate a list of all the objects contained in both images"),
                  Part.fromBytes(localFileImgBytes, "image/jpeg"),
                  Part.fromUri(gcsFileImagePath, "image/jpeg")),
              null);

      System.out.print(response.text());
      // Example response:
      // Okay, here's the list of objects present in both images:
      //
      // **Image 1 (Scones):**
      //
      // *   Scones
      // *   Plate
      // *   Jam/Preserve
      // *   Cream/Butter
      // *   Table/Surface
      // *   Napkin/Cloth (possibly)
      //
      // **Image 2 (Latte):**
      //
      // *   Latte/Coffee cup
      // *   Saucer
      // *   Spoon
      // *   Table/Surface
      // *   Foam/Latte art
      //
      // **Objects potentially in both (depending on interpretation and specific items):**
      //
      // *   Plate/Saucer (both are serving dishes)
      // *   Table/Surface
      return response.text();
    }
  }
}

Node.js

Antes de testar esse exemplo, siga as instruções de configuração para Node.js no Guia de início rápido da Vertex AI sobre como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vertex AI para Node.js.

Para autenticar na Vertex AI, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

const {GoogleGenAI} = require('@google/genai');

const GOOGLE_CLOUD_PROJECT = process.env.GOOGLE_CLOUD_PROJECT;
const GOOGLE_CLOUD_LOCATION = process.env.GOOGLE_CLOUD_LOCATION || 'global';

async function generateContent(
  projectId = GOOGLE_CLOUD_PROJECT,
  location = GOOGLE_CLOUD_LOCATION
) {
  const ai = new GoogleGenAI({
    vertexai: true,
    project: projectId,
    location: location,
  });

  const image1 = {
    fileData: {
      fileUri: 'gs://cloud-samples-data/generative-ai/image/scones.jpg',
      mimeType: 'image/jpeg',
    },
  };

  const image2 = {
    fileData: {
      fileUri: 'gs://cloud-samples-data/generative-ai/image/fruit.png',
      mimeType: 'image/png',
    },
  };

  const response = await ai.models.generateContent({
    model: 'gemini-2.5-flash',
    contents: [
      image1,
      image2,
      'Generate a list of all the objects contained in both images.',
    ],
  });

  console.log(response.text);

  return response.text;
}

Python

Antes de testar esse exemplo, siga as instruções de configuração para Python no Guia de início rápido da Vertex AI sobre como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vertex AI para Python.

Para autenticar na Vertex AI, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

from google import genai
from google.genai.types import HttpOptions, Part

client = genai.Client(http_options=HttpOptions(api_version="v1"))

# Read content from GCS
gcs_file_img_path = "gs://cloud-samples-data/generative-ai/image/scones.jpg"

# Read content from a local file
with open("test_data/latte.jpg", "rb") as f:
    local_file_img_bytes = f.read()

response = client.models.generate_content(
    model="gemini-2.5-flash",
    contents=[
        "Generate a list of all the objects contained in both images.",
        Part.from_uri(file_uri=gcs_file_img_path, mime_type="image/jpeg"),
        Part.from_bytes(data=local_file_img_bytes, mime_type="image/jpeg"),
    ],
)
print(response.text)
# Example response:
# Okay, here's the list of objects present in both images:
# ...

A seguir

Para pesquisar e filtrar exemplos de código de outros Google Cloud produtos, consulte a Google Cloud pesquisa de exemplos de código.