Générer du texte à l'aide d'images provenant d'un emplacement local et de Google Cloud Storage
Restez organisé à l'aide des collections
Enregistrez et classez les contenus selon vos préférences.
Cet exemple montre comment générer du texte à l'aide d'une image locale et d'une image dans Google Cloud Storage.
En savoir plus
Pour obtenir une documentation détaillée incluant cet exemple de code, consultez la page suivante :
Exemple de code
Sauf indication contraire, le contenu de cette page est régi par une licence Creative Commons Attribution 4.0, et les échantillons de code sont régis par une licence Apache 2.0. Pour en savoir plus, consultez les Règles du site Google Developers. Java est une marque déposée d'Oracle et/ou de ses sociétés affiliées.
[[["Facile à comprendre","easyToUnderstand","thumb-up"],["J'ai pu résoudre mon problème","solvedMyProblem","thumb-up"],["Autre","otherUp","thumb-up"]],[["Difficile à comprendre","hardToUnderstand","thumb-down"],["Informations ou exemple de code incorrects","incorrectInformationOrSampleCode","thumb-down"],["Il n'y a pas l'information/les exemples dont j'ai besoin","missingTheInformationSamplesINeed","thumb-down"],["Problème de traduction","translationIssue","thumb-down"],["Autre","otherDown","thumb-down"]],[],[],[],null,["# Generate text using images from a local and Google Cloud Storage\n\nThis example demonstrates how to generate text using a local image and an image in Google Cloud Storage\n\nExplore further\n---------------\n\n\nFor detailed documentation that includes this code sample, see the following:\n\n- [Image understanding](/vertex-ai/generative-ai/docs/multimodal/image-understanding)\n\nCode sample\n-----------\n\n### Go\n\n\nBefore trying this sample, follow the Go setup instructions in the\n[Vertex AI quickstart using\nclient libraries](/vertex-ai/docs/start/client-libraries).\n\n\nFor more information, see the\n[Vertex AI Go API\nreference documentation](/go/docs/reference/cloud.google.com/go/aiplatform/latest/apiv1).\n\n\nTo authenticate to Vertex AI, set up Application Default Credentials.\nFor more information, see\n\n[Set up authentication for a local development environment](/docs/authentication/set-up-adc-local-dev-environment).\n\n import (\n \t\"context\"\n \t\"fmt\"\n \t\"io\"\n \t\"os\"\n\n \tgenai \"google.golang.org/genai\"\n )\n\n // generateWithMultiImg shows how to generate text using multiple image inputs.\n func generateWithMultiImg(w io.Writer) error {\n \tctx := context.Background()\n\n \tclient, err := genai.NewClient(ctx, &genai.ClientConfig{\n \t\tHTTPOptions: genai.HTTPOptions{APIVersion: \"v1\"},\n \t})\n \tif err != nil {\n \t\treturn fmt.Errorf(\"failed to create genai client: %w\", err)\n \t}\n\n \t// TODO(Developer): Update the path to file (image source:\n \t// https://storage.googleapis.com/cloud-samples-data/generative-ai/image/latte.jpg )\n \timageBytes, err := os.ReadFile(\"./latte.jpg\")\n \tif err != nil {\n \t\treturn fmt.Errorf(\"failed to read image: %w\", err)\n \t}\n\n \tcontents := []*genai.Content{\n \t\t{Parts: []*genai.Part{\n \t\t\t{Text: \"Write an advertising jingle based on the items in both images.\"},\n \t\t\t{FileData: &genai.FileData{\n \t\t\t\t// Image source: https://storage.googleapis.com/cloud-samples-data/generative-ai/image/scones.jpg\n \t\t\t\tFileURI: \"gs://cloud-samples-data/generative-ai/image/scones.jpg\",\n \t\t\t\tMIMEType: \"image/jpeg\",\n \t\t\t}},\n \t\t\t{InlineData: &genai.Blob{\n \t\t\t\tData: imageBytes,\n \t\t\t\tMIMEType: \"image/jpeg\",\n \t\t\t}},\n \t\t}},\n \t}\n \tmodelName := \"gemini-2.5-flash\"\n\n \tresp, err := client.Models.GenerateContent(ctx, modelName, contents, nil)\n \tif err != nil {\n \t\treturn fmt.Errorf(\"failed to generate content: %w\", err)\n \t}\n\n \trespText := resp.Text()\n\n \tfmt.Fprintln(w, respText)\n\n \t// Example response:\n \t// Okay, here's an advertising jingle inspired by the blueberry scones, coffee, flowers, chocolate cake, and latte:\n \t//\n \t// (Upbeat, jazzy music)\n \t// ...\n\n \treturn nil\n }\n\n### Node.js\n\n\nBefore trying this sample, follow the Node.js setup instructions in the\n[Vertex AI quickstart using\nclient libraries](/vertex-ai/docs/start/client-libraries).\n\n\nFor more information, see the\n[Vertex AI Node.js API\nreference documentation](/nodejs/docs/reference/aiplatform/latest).\n\n\nTo authenticate to Vertex AI, set up Application Default Credentials.\nFor more information, see\n\n[Set up authentication for a local development environment](/docs/authentication/set-up-adc-local-dev-environment).\n\n const {GoogleGenAI} = require('@google/genai');\n\n const GOOGLE_CLOUD_PROJECT = process.env.GOOGLE_CLOUD_PROJECT;\n const GOOGLE_CLOUD_LOCATION = process.env.GOOGLE_CLOUD_LOCATION || 'global';\n\n async function generateContent(\n projectId = GOOGLE_CLOUD_PROJECT,\n location = GOOGLE_CLOUD_LOCATION\n ) {\n const ai = new GoogleGenAI({\n vertexai: true,\n project: projectId,\n location: location,\n });\n\n const image1 = {\n fileData: {\n fileUri: 'gs://cloud-samples-data/generative-ai/image/scones.jpg',\n mimeType: 'image/jpeg',\n },\n };\n\n const image2 = {\n fileData: {\n fileUri: 'gs://cloud-samples-data/generative-ai/image/fruit.png',\n mimeType: 'image/png',\n },\n };\n\n const response = await ai.models.generateContent({\n model: 'gemini-2.5-flash',\n contents: [\n image1,\n image2,\n 'Generate a list of all the objects contained in both images.',\n ],\n });\n\n console.log(response.text);\n\n return response.text;\n }\n\n### Python\n\n\nBefore trying this sample, follow the Python setup instructions in the\n[Vertex AI quickstart using\nclient libraries](/vertex-ai/docs/start/client-libraries).\n\n\nFor more information, see the\n[Vertex AI Python API\nreference documentation](/python/docs/reference/aiplatform/latest).\n\n\nTo authenticate to Vertex AI, set up Application Default Credentials.\nFor more information, see\n\n[Set up authentication for a local development environment](/docs/authentication/set-up-adc-local-dev-environment).\n\n from google import genai\n from google.genai.types import HttpOptions, Part\n\n client = genai.Client(http_options=HttpOptions(api_version=\"v1\"))\n\n # Read content from GCS\n gcs_file_img_path = \"gs://cloud-samples-data/generative-ai/image/scones.jpg\"\n\n # Read content from a local file\n with open(\"test_data/latte.jpg\", \"rb\") as f:\n local_file_img_bytes = f.read()\n\n response = client.models.generate_content(\n model=\"gemini-2.5-flash\",\n contents=[\n \"Generate a list of all the objects contained in both images.\",\n Part.from_uri(file_uri=gcs_file_img_path, mime_type=\"image/jpeg\"),\n Part.from_bytes(data=local_file_img_bytes, mime_type=\"image/jpeg\"),\n ],\n )\n print(response.text)\n # Example response:\n # Okay, here's the list of objects present in both images:\n # ...\n\nWhat's next\n-----------\n\n\nTo search and filter code samples for other Google Cloud products, see the\n[Google Cloud sample browser](/docs/samples?product=googlegenaisdk)."]]