Utiliser Gemini pour résumer un fichier vidéo local
Restez organisé à l'aide des collections
Enregistrez et classez les contenus selon vos préférences.
Cet exemple montre comment utiliser Gemini pour résumer un fichier vidéo local.
Exemple de code
Sauf indication contraire, le contenu de cette page est régi par une licence Creative Commons Attribution 4.0, et les échantillons de code sont régis par une licence Apache 2.0. Pour en savoir plus, consultez les Règles du site Google Developers. Java est une marque déposée d'Oracle et/ou de ses sociétés affiliées.
[[["Facile à comprendre","easyToUnderstand","thumb-up"],["J'ai pu résoudre mon problème","solvedMyProblem","thumb-up"],["Autre","otherUp","thumb-up"]],[["Difficile à comprendre","hardToUnderstand","thumb-down"],["Informations ou exemple de code incorrects","incorrectInformationOrSampleCode","thumb-down"],["Il n'y a pas l'information/les exemples dont j'ai besoin","missingTheInformationSamplesINeed","thumb-down"],["Problème de traduction","translationIssue","thumb-down"],["Autre","otherDown","thumb-down"]],[],[],[],null,["# Use Gemini to summarize local video file\n\nThis sample demonstrates how to use Gemini to summarize a local video file.\n\nCode sample\n-----------\n\n### Python\n\n\nBefore trying this sample, follow the Python setup instructions in the\n[Vertex AI quickstart using\nclient libraries](/vertex-ai/docs/start/client-libraries).\n\n\nFor more information, see the\n[Vertex AI Python API\nreference documentation](/python/docs/reference/aiplatform/latest).\n\n\nTo authenticate to Vertex AI, set up Application Default Credentials.\nFor more information, see\n\n[Set up authentication for a local development environment](/docs/authentication/set-up-adc-local-dev-environment).\n\n from google import genai\n from google.genai.types import HttpOptions, Part\n\n client = genai.Client(http_options=HttpOptions(api_version=\"v1\"))\n model_id = \"gemini-2.5-flash\"\n\n # Read local video file content\n with open(\"test_data/describe_video_content.mp4\", \"rb\") as fp:\n # Video source: https://storage.googleapis.com/cloud-samples-data/generative-ai/video/describe_video_content.mp4\n video_content = fp.read()\n\n response = client.models.generate_content(\n model=model_id,\n contents=[\n Part.from_text(text=\"hello-world\"),\n Part.from_bytes(data=video_content, mime_type=\"video/mp4\"),\n \"Write a short and engaging blog post based on this video.\",\n ],\n )\n\n print(response.text)\n # Example response:\n # Okay, here's a short and engaging blog post based on the climbing video:\n # **Title: Conquering the Wall: A Glimpse into the World of Indoor Climbing**\n # ...\n\nWhat's next\n-----------\n\n\nTo search and filter code samples for other Google Cloud products, see the\n[Google Cloud sample browser](/docs/samples?product=googlegenaisdk)."]]