Configurations pour générer du contenu avec un modèle d'IA multimodal

Cet exemple montre comment fournir des configurations utilisateur à un modèle d'IA multimodal.

En savoir plus

Pour obtenir une documentation détaillée incluant cet exemple de code, consultez les articles suivants :

Exemple de code

Go

Avant d'essayer cet exemple, suivez les instructions de configuration pour Go décrites dans le guide de démarrage rapide de Vertex AI à l'aide des bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API Vertex AI Go.

Pour vous authentifier auprès de Vertex AI, configurez le service Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.

import (
	"context"
	"fmt"
	"io"

	genai "google.golang.org/genai"
)

// generateWithConfig shows how to generate text using a text prompt and custom configuration.
func generateWithConfig(w io.Writer) error {
	ctx := context.Background()

	client, err := genai.NewClient(ctx, &genai.ClientConfig{
		HTTPOptions: genai.HTTPOptions{APIVersion: "v1"},
	})
	if err != nil {
		return fmt.Errorf("failed to create genai client: %w", err)
	}

	modelName := "gemini-2.5-flash"
	contents := genai.Text("Why is the sky blue?")
	// See the documentation: https://googleapis.github.io/python-genai/genai.html#genai.types.GenerateContentConfig
	config := &genai.GenerateContentConfig{
		Temperature:      genai.Ptr(float32(0.0)),
		CandidateCount:   int32(1),
		ResponseMIMEType: "application/json",
	}

	resp, err := client.Models.GenerateContent(ctx, modelName, contents, config)
	if err != nil {
		return fmt.Errorf("failed to generate content: %w", err)
	}

	respText := resp.Text()

	fmt.Fprintln(w, respText)
	// Example response:
	// {
	//   "explanation": "The sky is blue due to a phenomenon called Rayleigh scattering ...
	// }

	return nil
}

Python

Avant d'essayer cet exemple, suivez les instructions de configuration pour Python décrites dans le guide de démarrage rapide de Vertex AI sur l'utilisation des bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API Vertex AI Python.

Pour vous authentifier auprès de Vertex AI, configurez le service Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.

from google import genai
from google.genai.types import GenerateContentConfig, HttpOptions

client = genai.Client(http_options=HttpOptions(api_version="v1"))
response = client.models.generate_content(
    model="gemini-2.5-flash",
    contents="Why is the sky blue?",
    # See the SDK documentation at
    # https://googleapis.github.io/python-genai/genai.html#genai.types.GenerateContentConfig
    config=GenerateContentConfig(
        temperature=0,
        candidate_count=1,
        response_mime_type="application/json",
        top_p=0.95,
        top_k=20,
        seed=5,
        max_output_tokens=500,
        stop_sequences=["STOP!"],
        presence_penalty=0.0,
        frequency_penalty=0.0,
    ),
)
print(response.text)
# Example response:
# {
#   "explanation": "The sky appears blue due to a phenomenon called Rayleigh scattering. When ...
# }

Étape suivante

Pour rechercher et filtrer des exemples de code pour d'autres produits Google Cloud , consultez l'explorateur d'exemplesGoogle Cloud .