Renvoyer la réponse du LLM
Restez organisé à l'aide des collections
Enregistrez et classez les contenus selon vos préférences.
Cet exemple montre comment exécuter une requête de récupération pour obtenir une réponse du LLM.
En savoir plus
Pour obtenir une documentation détaillée incluant cet exemple de code, consultez les articles suivants :
Exemple de code
Sauf indication contraire, le contenu de cette page est régi par une licence Creative Commons Attribution 4.0, et les échantillons de code sont régis par une licence Apache 2.0. Pour en savoir plus, consultez les Règles du site Google Developers. Java est une marque déposée d'Oracle et/ou de ses sociétés affiliées.
[[["Facile à comprendre","easyToUnderstand","thumb-up"],["J'ai pu résoudre mon problème","solvedMyProblem","thumb-up"],["Autre","otherUp","thumb-up"]],[["Difficile à comprendre","hardToUnderstand","thumb-down"],["Informations ou exemple de code incorrects","incorrectInformationOrSampleCode","thumb-down"],["Il n'y a pas l'information/les exemples dont j'ai besoin","missingTheInformationSamplesINeed","thumb-down"],["Problème de traduction","translationIssue","thumb-down"],["Autre","otherDown","thumb-down"]],[],[],[],null,["# Return the response from the LLM\n\nThis sample demonstrates how to run a retrieval query to get a response from the LLM.\n\nExplore further\n---------------\n\n\nFor detailed documentation that includes this code sample, see the following:\n\n- [RAG Engine API](/vertex-ai/generative-ai/docs/model-reference/rag-api-v1)\n- [Use a Weaviate database with Vertex AI RAG Engine](/vertex-ai/generative-ai/docs/rag-engine/use-weaviate-db)\n- [Use Vertex AI Feature Store in Vertex AI RAG Engine](/vertex-ai/generative-ai/docs/rag-engine/use-feature-store-with-rag)\n- [Use Vertex AI Search as a retrieval backend using Vertex AI RAG Engine](/vertex-ai/generative-ai/docs/rag-engine/use-vertexai-search)\n- [Use Vertex AI Vector Search with Vertex AI RAG Engine](/vertex-ai/generative-ai/docs/rag-engine/use-vertexai-vector-search)\n\nCode sample\n-----------\n\n### Python\n\n\nBefore trying this sample, follow the Python setup instructions in the\n[Vertex AI quickstart using\nclient libraries](/vertex-ai/docs/start/client-libraries).\n\n\nFor more information, see the\n[Vertex AI Python API\nreference documentation](/python/docs/reference/aiplatform/latest).\n\n\nTo authenticate to Vertex AI, set up Application Default Credentials.\nFor more information, see\n\n[Set up authentication for a local development environment](/docs/authentication/set-up-adc-local-dev-environment).\n\n\n from vertexai import rag\n import https://cloud.google.com/python/docs/reference/vertexai/latest/\n\n # TODO(developer): Update and un-comment below lines\n # PROJECT_ID = \"your-project-id\"\n # corpus_name = \"projects/[PROJECT_ID]/locations/us-central1/ragCorpora/[rag_corpus_id]\"\n\n # Initialize Vertex AI API once per session\n https://cloud.google.com/python/docs/reference/vertexai/latest/.init(project=PROJECT_ID, location=\"us-central1\")\n\n response = rag.retrieval_query(\n rag_resources=[\n rag.RagResource(\n rag_corpus=corpus_name,\n # Optional: supply IDs from `rag.list_files()`.\n # rag_file_ids=[\"rag-file-1\", \"rag-file-2\", ...],\n )\n ],\n text=\"Hello World!\",\n rag_retrieval_config=rag.RagRetrievalConfig(\n top_k=10,\n filter=rag.utils.resources.Filter(vector_distance_threshold=0.5),\n ),\n )\n print(response)\n # Example response:\n # contexts {\n # contexts {\n # source_uri: \"gs://your-bucket-name/file.txt\"\n # text: \"....\n # ....\n\nWhat's next\n-----------\n\n\nTo search and filter code samples for other Google Cloud products, see the\n[Google Cloud sample browser](/docs/samples?product=generativeaionvertexai)."]]