Gerar texto de uma imagem com as configurações de segurança

Este exemplo demonstra como usar o modelo Gemini com configurações de segurança para gerar texto com base em uma imagem.

Mais informações

Para ver a documentação detalhada que inclui este exemplo de código, consulte:

Exemplo de código

C#

Antes de testar esse exemplo, siga as instruções de configuração para C# no Guia de início rápido da Vertex AI sobre como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vertex AI para C#.

Para autenticar na Vertex AI, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.


using Google.Api.Gax.Grpc;
using Google.Cloud.AIPlatform.V1;
using System.Text;
using System.Threading.Tasks;
using static Google.Cloud.AIPlatform.V1.SafetySetting.Types;

public class WithSafetySettings
{
    public async Task<string> GenerateContent(
        string projectId = "your-project-id",
        string location = "us-central1",
        string publisher = "google",
        string model = "gemini-1.5-flash-001"
    )
    {
        var predictionServiceClient = new PredictionServiceClientBuilder
        {
            Endpoint = $"{location}-aiplatform.googleapis.com"
        }.Build();


        var generateContentRequest = new GenerateContentRequest
        {
            Model = $"projects/{projectId}/locations/{location}/publishers/{publisher}/models/{model}",
            Contents =
            {
                new Content
                {
                    Role = "USER",
                    Parts =
                    {
                        new Part { Text = "Hello!" }
                    }
                }
            },
            SafetySettings =
            {
                new SafetySetting
                {
                    Category = HarmCategory.HateSpeech,
                    Threshold = HarmBlockThreshold.BlockLowAndAbove
                },
                new SafetySetting
                {
                    Category = HarmCategory.DangerousContent,
                    Threshold = HarmBlockThreshold.BlockMediumAndAbove
                }
            }
        };

        using PredictionServiceClient.StreamGenerateContentStream response = predictionServiceClient.StreamGenerateContent(generateContentRequest);

        StringBuilder fullText = new();

        AsyncResponseStream<GenerateContentResponse> responseStream = response.GetResponseStream();
        await foreach (GenerateContentResponse responseItem in responseStream)
        {
            // Check if the content has been blocked for safety reasons.
            bool blockForSafetyReason = responseItem.Candidates[0].FinishReason == Candidate.Types.FinishReason.Safety;
            if (blockForSafetyReason)
            {
                fullText.Append("Blocked for safety reasons");
            }
            else
            {
                fullText.Append(responseItem.Candidates[0].Content.Parts[0].Text);
            }
        }

        return fullText.ToString();
    }
}

Go

Antes de testar essa amostra, siga as instruções de configuração para Go Guia de início rápido da Vertex AI: como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vertex AI para Go.

Para autenticar na Vertex AI, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

import (
	"context"
	"fmt"
	"io"
	"mime"
	"path/filepath"

	"cloud.google.com/go/vertexai/genai"
)

// generateMultimodalContent generates a response into w, based upon the prompt
// and image provided.
func generateMultimodalContent(w io.Writer, prompt, image, projectID, location, modelName string) error {
	// prompt := "describe this image."
	// location := "us-central1"
	// model := "gemini-1.5-flash-001"
	// image := "gs://cloud-samples-data/generative-ai/image/320px-Felis_catus-cat_on_snow.jpg"
	ctx := context.Background()

	client, err := genai.NewClient(ctx, projectID, location)
	if err != nil {
		return fmt.Errorf("unable to create client: %w", err)
	}
	defer client.Close()

	model := client.GenerativeModel(modelName)
	model.SetTemperature(0.4)
	// configure the safety settings thresholds
	model.SafetySettings = []*genai.SafetySetting{
		{
			Category:  genai.HarmCategoryHarassment,
			Threshold: genai.HarmBlockLowAndAbove,
		},
		{
			Category:  genai.HarmCategoryDangerousContent,
			Threshold: genai.HarmBlockLowAndAbove,
		},
	}

	// Given an image file URL, prepare image file as genai.Part
	img := genai.FileData{
		MIMEType: mime.TypeByExtension(filepath.Ext(image)),
		FileURI:  image,
	}

	res, err := model.GenerateContent(ctx, img, genai.Text(prompt))
	if err != nil {
		return fmt.Errorf("unable to generate contents: %w", err)
	}

	fmt.Fprintf(w, "generated response: %s\n", res.Candidates[0].Content.Parts[0])
	return nil
}

Java

Antes de testar essa amostra, siga as instruções de configuração para Java Guia de início rápido da Vertex AI: como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vertex AI para Java.

Para autenticar na Vertex AI, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

import com.google.cloud.vertexai.VertexAI;
import com.google.cloud.vertexai.api.Candidate;
import com.google.cloud.vertexai.api.GenerateContentResponse;
import com.google.cloud.vertexai.api.GenerationConfig;
import com.google.cloud.vertexai.api.HarmCategory;
import com.google.cloud.vertexai.api.SafetySetting;
import com.google.cloud.vertexai.generativeai.GenerativeModel;
import java.util.Arrays;
import java.util.List;

public class WithSafetySettings {

  public static void main(String[] args) throws Exception {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "your-google-cloud-project-id";
    String location = "us-central1";
    String modelName = "gemini-1.5-flash-001";
    String textPrompt = "your-text-here";

    String output = safetyCheck(projectId, location, modelName, textPrompt);
    System.out.println(output);
  }

  // Use safety settings to avoid harmful questions and content generation.
  public static String safetyCheck(String projectId, String location, String modelName,
      String textPrompt) throws Exception {
    // Initialize client that will be used to send requests. This client only needs
    // to be created once, and can be reused for multiple requests.
    try (VertexAI vertexAI = new VertexAI(projectId, location)) {
      StringBuilder output = new StringBuilder();

      GenerationConfig generationConfig =
          GenerationConfig.newBuilder()
              .setMaxOutputTokens(2048)
              .setTemperature(0.4F)
              .setTopK(32)
              .setTopP(1)
              .build();

      List<SafetySetting> safetySettings = Arrays.asList(
          SafetySetting.newBuilder()
              .setCategory(HarmCategory.HARM_CATEGORY_HATE_SPEECH)
              .setThreshold(SafetySetting.HarmBlockThreshold.BLOCK_LOW_AND_ABOVE)
              .build(),
          SafetySetting.newBuilder()
              .setCategory(HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT)
              .setThreshold(SafetySetting.HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE)
              .build()
      );

      GenerativeModel model = new GenerativeModel(modelName, vertexAI)
          .withGenerationConfig(generationConfig)
          .withSafetySettings(safetySettings);

      GenerateContentResponse response = model.generateContent(textPrompt);
      output.append(response).append("\n");

      // Verifies if the above content has been blocked for safety reasons.
      boolean blockedForSafetyReason = response.getCandidatesList()
          .stream()
          .anyMatch(candidate -> candidate.getFinishReason() == Candidate.FinishReason.SAFETY);
      output.append("Blocked for safety reasons?: ").append(blockedForSafetyReason);

      return output.toString();
    }
  }
}

Node.js

Antes de testar essa amostra, siga as instruções de configuração para Node.js Guia de início rápido da Vertex AI: como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vertex AI para Node.js.

Para autenticar na Vertex AI, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

const {
  VertexAI,
  HarmCategory,
  HarmBlockThreshold,
} = require('@google-cloud/vertexai');

/**
 * TODO(developer): Update these variables before running the sample.
 */
async function setSafetySettings(
  projectId = 'PROJECT_ID',
  location = 'us-central1',
  model = 'gemini-1.5-flash-001'
) {
  // Initialize Vertex with your Cloud project and location
  const vertexAI = new VertexAI({project: projectId, location: location});

  // Instantiate the model
  const generativeModel = vertexAI.getGenerativeModel({
    model: model,
    // The following parameters are optional
    // They can also be passed to individual content generation requests
    safety_settings: [
      {
        category: HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT,
        threshold: HarmBlockThreshold.BLOCK_LOW_AND_ABOVE,
      },
    ],
    generation_config: {
      max_output_tokens: 256,
      temperature: 0.4,
      top_p: 1,
      top_k: 16,
    },
  });

  const request = {
    contents: [{role: 'user', parts: [{text: 'Tell me something dangerous.'}]}],
  };

  console.log('Prompt:');
  console.log(request.contents[0].parts[0].text);
  console.log('Streaming Response Text:');

  // Create the response stream
  const responseStream = await generativeModel.generateContentStream(request);

  // Log the text response as it streams
  for await (const item of responseStream.stream) {
    if (item.candidates[0].finishReason === 'SAFETY') {
      console.log('This response stream terminated due to safety concerns.');
      break;
    } else {
      process.stdout.write(item.candidates[0].content.parts[0].text);
    }
  }
  console.log('This response stream terminated due to safety concerns.');
}

Python

Antes de testar essa amostra, siga as instruções de configuração para Python Guia de início rápido da Vertex AI: como usar bibliotecas de cliente. Para mais informações, consulte a documentação de referência da API Vertex AI para Python.

Para autenticar na Vertex AI, configure o Application Default Credentials. Para mais informações, consulte Configurar a autenticação para um ambiente de desenvolvimento local.

import vertexai

from vertexai.generative_models import (
    GenerativeModel,
    GenerationConfig,
    SafetySetting,
    HarmCategory,
    HarmBlockThreshold,
)

# TODO(developer): Update project
vertexai.init(project=PROJECT_ID, location="us-central1")

model = GenerativeModel("gemini-1.5-flash-001")

# Generation config
generation_config = GenerationConfig(
    max_output_tokens=2048, temperature=0.4, top_p=1, top_k=32
)

# Safety config
safety_config = [
    SafetySetting(
        category=HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT,
        threshold=HarmBlockThreshold.BLOCK_LOW_AND_ABOVE,
    ),
    SafetySetting(
        category=HarmCategory.HARM_CATEGORY_HARASSMENT,
        threshold=HarmBlockThreshold.BLOCK_LOW_AND_ABOVE,
    ),
]

image_file = Part.from_uri(
    "gs://cloud-samples-data/generative-ai/image/scones.jpg", "image/jpeg"
)

# Generate content
responses = model.generate_content(
    [image_file, "What is in this image?"],
    generation_config=generation_config,
    safety_settings=safety_config,
    stream=True,
)

text_responses = []
for response in responses:
    print(response.text)
    text_responses.append(response.text)

A seguir

Para pesquisar e filtrar exemplos de código de outros produtos do Google Cloud, consulte a pesquisa de exemplos de código do Google Cloud.