Générer des embeddings à partir de texte à l'aide du traitement par lot

L'exemple de code montre comment utiliser un modèle pré-entraîné pour générer des embeddings par lot pour une liste d'entrées textuelles et les stocker à un emplacement spécifié.

Exemple de code

Java

Avant d'essayer cet exemple, suivez les instructions de configuration pour Java décrites dans le guide de démarrage rapide de Vertex AI à l'aide des bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API Vertex AI Java.

Pour vous authentifier auprès de Vertex AI, configurez le service Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.


import com.google.cloud.aiplatform.v1.BatchPredictionJob;
import com.google.cloud.aiplatform.v1.GcsDestination;
import com.google.cloud.aiplatform.v1.GcsSource;
import com.google.cloud.aiplatform.v1.JobServiceClient;
import com.google.cloud.aiplatform.v1.JobServiceSettings;
import com.google.cloud.aiplatform.v1.LocationName;
import java.io.IOException;

public class EmbeddingBatchSample {

  public static void main(String[] args) throws IOException, InterruptedException {
    // TODO(developer): Replace these variables before running the sample.
    String project = "YOUR_PROJECT_ID";
    String location = "us-central1";
    // inputUri: URI of the input dataset.
    // Could be a BigQuery table or a Google Cloud Storage file.
    // E.g. "gs://[BUCKET]/[DATASET].jsonl" OR "bq://[PROJECT].[DATASET].[TABLE]"
    String inputUri = "gs://cloud-samples-data/generative-ai/embeddings/embeddings_input.jsonl";
    // outputUri: URI where the output will be stored.
    // Could be a BigQuery table or a Google Cloud Storage file.
    // E.g. "gs://[BUCKET]/[OUTPUT].jsonl" OR "bq://[PROJECT].[DATASET].[TABLE]"
    String outputUri = "gs://YOUR_BUCKET/embedding_batch_output";
    String textEmbeddingModel = "text-embedding-005";

    embeddingBatchSample(project, location, inputUri, outputUri, textEmbeddingModel);
  }

  // Generates embeddings from text using batch processing.
  // Read more: https://cloud.google.com/vertex-ai/generative-ai/docs/embeddings/batch-prediction-genai-embeddings
  public static BatchPredictionJob embeddingBatchSample(
      String project, String location, String inputUri, String outputUri, String textEmbeddingModel)
      throws IOException {
    BatchPredictionJob response;
    JobServiceSettings jobServiceSettings =  JobServiceSettings.newBuilder()
        .setEndpoint("us-central1-aiplatform.googleapis.com:443").build();
    LocationName parent = LocationName.of(project, location);
    String modelName = String.format("projects/%s/locations/%s/publishers/google/models/%s",
        project, location, textEmbeddingModel);

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests.
    try (JobServiceClient client = JobServiceClient.create(jobServiceSettings)) {
      BatchPredictionJob batchPredictionJob =
          BatchPredictionJob.newBuilder()
              .setDisplayName("my embedding batch job " + System.currentTimeMillis())
              .setModel(modelName)
              .setInputConfig(
                  BatchPredictionJob.InputConfig.newBuilder()
                      .setGcsSource(GcsSource.newBuilder().addUris(inputUri).build())
                      .setInstancesFormat("jsonl")
                      .build())
              .setOutputConfig(
                  BatchPredictionJob.OutputConfig.newBuilder()
                      .setGcsDestination(GcsDestination.newBuilder()
                          .setOutputUriPrefix(outputUri).build())
                      .setPredictionsFormat("jsonl")
                      .build())
              .build();

      response = client.createBatchPredictionJob(parent, batchPredictionJob);

      System.out.format("response: %s\n", response);
      System.out.format("\tName: %s\n", response.getName());
    }
    return response;
  }
}

Python

Avant d'essayer cet exemple, suivez les instructions de configuration pour Python décrites dans le guide de démarrage rapide de Vertex AI sur l'utilisation des bibliothèques clientes. Pour en savoir plus, consultez la documentation de référence de l'API Vertex AI Python.

Pour vous authentifier auprès de Vertex AI, configurez le service Identifiants par défaut de l'application. Pour en savoir plus, consultez Configurer l'authentification pour un environnement de développement local.

import vertexai

from vertexai.preview import language_models

# TODO(developer): Update & uncomment line below
# PROJECT_ID = "your-project-id"
vertexai.init(project=PROJECT_ID, location="us-central1")
input_uri = (
    "gs://cloud-samples-data/generative-ai/embeddings/embeddings_input.jsonl"
)
# Format: `"gs://your-bucket-unique-name/directory/` or `bq://project_name.llm_dataset`
output_uri = OUTPUT_URI

textembedding_model = language_models.TextEmbeddingModel.from_pretrained(
    "textembedding-gecko@003"
)

batch_prediction_job = textembedding_model.batch_predict(
    dataset=[input_uri],
    destination_uri_prefix=output_uri,
)
print(batch_prediction_job.display_name)
print(batch_prediction_job.resource_name)
print(batch_prediction_job.state)
# Example response:
# BatchPredictionJob 2024-09-10 15:47:51.336391
# projects/1234567890/locations/us-central1/batchPredictionJobs/123456789012345
# JobState.JOB_STATE_SUCCEEDED

Étape suivante

Pour rechercher et filtrer des exemples de code pour d'autres produits Google Cloud , consultez l'explorateur d'exemplesGoogle Cloud .