텍스트 임베딩 API

텍스트 임베딩 API는 텍스트 데이터를 숫자 벡터로 변환합니다. 이러한 벡터 표현은 표현이 나타내는 단어의 시맨틱 의미와 컨텍스트를 캡처하도록 설계되었습니다.

지원되는 모델:

영어 모델 다국어 모델
textembedding-gecko@001 textembedding-gecko-multilingual@001
textembedding-gecko@003 text-multilingual-embedding-002
text-embedding-004
text-embedding-preview-0815

구문

curl

PROJECT_ID = PROJECT_ID
REGION = us-central1
MODEL_ID = MODEL_ID

curl -X POST \
  -H "Authorization: Bearer $(gcloud auth print-access-token)" \
  -H "Content-Type: application/json" \
  https://${REGION}-aiplatform.googleapis.com/v1/projects/${PROJECT_ID}/locations/${REGION}/publishers/google/models/${MODEL_ID}:predict -d \
  '{
    "instances": [
      ...
    ],
    "parameters": {
      ...
    }
  }'

Python

PROJECT_ID = PROJECT_ID
REGION = us-central1
MODEL_ID = MODEL_ID

import vertexai
from vertexai.language_models import TextEmbeddingModel

vertexai.init(project=PROJECT_ID, location=REGION)

model = TextEmbeddingModel.from_pretrained(MODEL_ID)
embeddings = model.get_embeddings(...)

매개변수 목록

매개변수

texts

list of union[string, TextEmbeddingInput]

각 인스턴스는 임베딩할 단일 텍스트를 나타냅니다.

TextEmbeddingInput

string

임베딩을 생성하려는 텍스트입니다.

auto_truncate

선택사항: bool

true로 설정하면 입력 텍스트가 잘립니다. false로 설정하면 입력 텍스트가 모델에서 지원하는 최대 길이보다 길경우 오류가 반환됩니다. 기본값은 true입니다.

output_dimensionality

선택사항: int

출력 임베딩 크기를 지정하는 데 사용됩니다. 설정하면 출력 임베딩이 지정된 크기로 잘립니다.

요청 본문

{
  "instances": [
    { 
      "task_type": "RETRIEVAL_DOCUMENT",
      "title": "document title",
      "content": "I would like embeddings for this text!"
    },
  ]
}
매개변수

content

string

임베딩을 생성하려는 텍스트입니다.

task_type

선택사항: string

모델이 더 나은 임베딩을 생성할 수 있도록 의도된 다운스트림 애플리케이션을 전달하는 데 사용됩니다. 비워두면 기본값 RETRIEVAL_QUERY가 사용됩니다.

  • RETRIEVAL_QUERY
  • RETRIEVAL_DOCUMENT
  • SEMANTIC_SIMILARITY
  • CLASSIFICATION
  • CLUSTERING
  • QUESTION_ANSWERING
  • FACT_VERIFICATION
  • CODE_RETRIEVAL_QUERY

task_type 매개변수는 textembedding-gecko@001 모델에 지원되지 않습니다.

태스크 유형에 관한 자세한 내용은 임베딩 태스크 유형 선택을 참고하세요.

title

선택사항: string

모델이 더 나은 임베딩을 생성하도록 지원하는 데 사용됩니다. task_type=RETRIEVAL_DOCUMENT로만 유효합니다.

taskType

다음 표에서는 task_type 매개변수 값과 사용 사례를 설명합니다.

task_type 설명
RETRIEVAL_QUERY 지정된 텍스트가 검색 또는 가져오기 설정의 쿼리임을 지정합니다.
RETRIEVAL_DOCUMENT 지정된 텍스트가 검색 또는 가져오기 설정의 문서임을 지정합니다.
SEMANTIC_SIMILARITY 지정된 텍스트를 시맨틱 텍스트 유사성(STS)에 사용하도록 지정합니다.
CLASSIFICATION 분류에 임베딩을 사용하도록 지정합니다.
CLUSTERING 클러스터링에 임베딩을 사용하도록 지정합니다.
QUESTION_ANSWERING 질문에 답변하는 데 쿼리 임베딩을 사용하도록 지정합니다. 문서에는 RETRIEVAL_DOCUMENT를 사용합니다.
FACT_VERIFICATION 사실 확인에 쿼리 임베딩을 사용하도록 지정합니다.
CODE_RETRIEVAL_QUERY Java 및 Python용 코드 검색에 쿼리 임베딩을 사용하도록 지정합니다.

검색 태스크:

쿼리: task_type=RETRIEVAL_QUERY을 사용하여 입력 텍스트가 검색어임을 나타냅니다. Corpus: task_type=RETRIEVAL_DOCUMENT를 사용하여 입력 텍스트가 검색 중인 문서 컬렉션의 일부임을 나타냅니다.

유사성 태스크:

시맨틱 유사성: 두 입력 텍스트 모두에 task_type= SEMANTIC_SIMILARITY를 사용하여 전반적인 의미 유사성을 평가합니다.

응답 본문

{
  "predictions": [
    {
      "embeddings": {
        "statistics": {
          "truncated": boolean,
          "token_count": integer
        },
        "values": [ number ]
      }
    }
  ]
}
응답 요소 설명
embeddings 입력 텍스트에서 생성된 결과입니다.
statistics 입력 텍스트에서 계산된 통계입니다.
truncated 입력 텍스트가 최대 허용 토큰보다 길고 잘렸는지 여부를 나타냅니다.
tokenCount 입력 텍스트의 토큰 수입니다.
values values 필드에는 입력 텍스트의 단어에 해당하는 임베딩 벡터가 포함됩니다.

샘플 응답

{
  "predictions": [
    {
      "embeddings": {
        "values": [
          0.0058424929156899452,
          0.011848051100969315,
          0.032247550785541534,
          -0.031829461455345154,
          -0.055369812995195389,
          ...
        ],
        "statistics": {
          "token_count": 4,
          "truncated": false
        }
      }
    }
  ]
}

예시

텍스트 문자열 삽입

기본 사용 사례

다음 예시에서는 텍스트 문자열의 임베딩을 가져오는 방법을 보여줍니다.

REST

환경을 설정하면 REST를 사용하여 텍스트 프롬프트를 테스트할 수 있습니다. 다음 샘플은 요청을 게시자 모델 엔드포인트에 전송합니다.

요청 데이터를 사용하기 전에 다음을 바꿉니다.

  • PROJECT_ID: 프로젝트 ID
  • TEXT: 임베딩을 생성하려는 텍스트입니다. 한도: textembedding-gecko@001를 제외한 모든 모델에 대해 텍스트당 최대 2,048개의 토큰으로 구성된 텍스트 5개입니다. textembedding-gecko@001의 최대 입력 토큰 길이는 3072입니다.
  • AUTO_TRUNCATE: false로 설정하면 토큰 한도를 초과하는 텍스트로 인해 요청이 실패합니다. 기본값은 true입니다.

HTTP 메서드 및 URL:

POST https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/publishers/google/models/text-embedding-004:predict

JSON 요청 본문:

{
  "instances": [
    { "content": "TEXT"}
  ],
  "parameters": { 
    "autoTruncate": AUTO_TRUNCATE 
  }
}

요청을 보내려면 다음 옵션 중 하나를 선택합니다.

curl

요청 본문을 request.json 파일에 저장하고 다음 명령어를 실행합니다.

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/publishers/google/models/text-embedding-004:predict"

PowerShell

요청 본문을 request.json 파일에 저장하고 다음 명령어를 실행합니다.

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/publishers/google/models/text-embedding-004:predict" | Select-Object -Expand Content

다음과 비슷한 JSON 응답이 수신됩니다. values는 공간 절약을 위해 잘렸습니다.

이 샘플의 URL에서 다음 사항을 참고하세요.
  • 응답이 완전히 생성된 후 반환되도록 요청하려면 generateContent 메서드를 사용합니다. 시청자가 지연 시간에 대해 갖는 느낌을 줄이려면 streamGenerateContent 메서드를 사용하여 생성되는 응답을 스트리밍합니다.
  • 멀티모달 모델 ID는 메서드 앞의 URL 끝 부분에 있습니다(예: gemini-1.5-flash 또는 gemini-1.0-pro-vision). 이 샘플은 다른 모델도 지원할 수 있습니다.

Python

Vertex AI SDK for Python을 설치하거나 업데이트하는 방법은 Vertex AI SDK for Python 설치를 참조하세요. 자세한 내용은 Python API 참고 문서를 확인하세요.

from typing import List, Optional

from vertexai.language_models import TextEmbeddingInput, TextEmbeddingModel


def embed_text(
    texts: list = None,
    task: str = "RETRIEVAL_DOCUMENT",
    dimensionality: Optional[int] = 256,
) -> List[List[float]]:
    """Embeds texts with a pre-trained, foundational model.
    Args:
        texts (List[str]): A list of texts to be embedded.
        task (str): The task type for embedding. Check the available tasks in the model's documentation.
        dimensionality (Optional[int]): The dimensionality of the output embeddings.
    Returns:
        List[List[float]]: A list of lists containing the embedding vectors for each input text
    """
    if texts is None:
        texts = ["banana muffins? ", "banana bread? banana muffins?"]
    model = TextEmbeddingModel.from_pretrained("text-embedding-004")
    inputs = [TextEmbeddingInput(text, task) for text in texts]
    kwargs = dict(output_dimensionality=dimensionality) if dimensionality else {}
    embeddings = model.get_embeddings(inputs, **kwargs)
    return [embedding.values for embedding in embeddings]

Go

이 샘플을 사용해 보기 전에 Vertex AI 빠른 시작: 클라이언트 라이브러리 사용Go 설정 안내를 따르세요. 자세한 내용은 Vertex AI Go API 참고 문서를 참조하세요.

Vertex AI에 인증하려면 애플리케이션 기본 사용자 인증 정보를 설정합니다. 자세한 내용은 로컬 개발 환경의 인증 설정을 참조하세요.

import (
	"context"
	"fmt"
	"io"

	aiplatform "cloud.google.com/go/aiplatform/apiv1"
	"cloud.google.com/go/aiplatform/apiv1/aiplatformpb"

	"google.golang.org/api/option"
	"google.golang.org/protobuf/types/known/structpb"
)

// embedTexts shows how embeddings are set for text-embedding-preview-0409 model
func embedTexts(w io.Writer, project, location string) error {
	// location := "us-central1"
	ctx := context.Background()

	apiEndpoint := fmt.Sprintf("%s-aiplatform.googleapis.com:443", location)
	dimensionality := 5
	model := "text-embedding-004"
	texts := []string{"banana muffins? ", "banana bread? banana muffins?"}

	client, err := aiplatform.NewPredictionClient(ctx, option.WithEndpoint(apiEndpoint))
	if err != nil {
		return err
	}
	defer client.Close()

	endpoint := fmt.Sprintf("projects/%s/locations/%s/publishers/google/models/%s", project, location, model)
	instances := make([]*structpb.Value, len(texts))
	for i, text := range texts {
		instances[i] = structpb.NewStructValue(&structpb.Struct{
			Fields: map[string]*structpb.Value{
				"content":   structpb.NewStringValue(text),
				"task_type": structpb.NewStringValue("QUESTION_ANSWERING"),
			},
		})
	}

	params := structpb.NewStructValue(&structpb.Struct{
		Fields: map[string]*structpb.Value{
			"outputDimensionality": structpb.NewNumberValue(float64(dimensionality)),
		},
	})

	req := &aiplatformpb.PredictRequest{
		Endpoint:   endpoint,
		Instances:  instances,
		Parameters: params,
	}
	resp, err := client.Predict(ctx, req)
	if err != nil {
		return err
	}
	embeddings := make([][]float32, len(resp.Predictions))
	for i, prediction := range resp.Predictions {
		values := prediction.GetStructValue().Fields["embeddings"].GetStructValue().Fields["values"].GetListValue().Values
		embeddings[i] = make([]float32, len(values))
		for j, value := range values {
			embeddings[i][j] = float32(value.GetNumberValue())
		}
	}

	fmt.Fprintf(w, "Dimensionality: %d. Embeddings length: %d", len(embeddings[0]), len(embeddings))
	return nil
}

Java

이 샘플을 사용해 보기 전에 Vertex AI 빠른 시작: 클라이언트 라이브러리 사용Java 설정 안내를 따르세요. 자세한 내용은 Vertex AI Java API 참고 문서를 참조하세요.

Vertex AI에 인증하려면 애플리케이션 기본 사용자 인증 정보를 설정합니다. 자세한 내용은 로컬 개발 환경의 인증 설정을 참조하세요.

import static java.util.stream.Collectors.toList;

import com.google.cloud.aiplatform.v1.EndpointName;
import com.google.cloud.aiplatform.v1.PredictRequest;
import com.google.cloud.aiplatform.v1.PredictResponse;
import com.google.cloud.aiplatform.v1.PredictionServiceClient;
import com.google.cloud.aiplatform.v1.PredictionServiceSettings;
import com.google.protobuf.Struct;
import com.google.protobuf.Value;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import java.util.OptionalInt;
import java.util.regex.Matcher;
import java.util.regex.Pattern;

public class PredictTextEmbeddingsSample {
  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    // Details about text embedding request structure and supported models are available in:
    // https://cloud.google.com/vertex-ai/docs/generative-ai/embeddings/get-text-embeddings
    String endpoint = "us-central1-aiplatform.googleapis.com:443";
    String project = "YOUR_PROJECT_ID";
    String model = "text-embedding-004";
    predictTextEmbeddings(
        endpoint,
        project,
        model,
        List.of("banana bread?", "banana muffins?"),
        "QUESTION_ANSWERING",
        OptionalInt.of(256));
  }

  // Gets text embeddings from a pretrained, foundational model.
  public static List<List<Float>> predictTextEmbeddings(
      String endpoint,
      String project,
      String model,
      List<String> texts,
      String task,
      OptionalInt outputDimensionality)
      throws IOException {
    PredictionServiceSettings settings =
        PredictionServiceSettings.newBuilder().setEndpoint(endpoint).build();
    Matcher matcher = Pattern.compile("^(?<Location>\\w+-\\w+)").matcher(endpoint);
    String location = matcher.matches() ? matcher.group("Location") : "us-central1";
    EndpointName endpointName =
        EndpointName.ofProjectLocationPublisherModelName(project, location, "google", model);

    // You can use this prediction service client for multiple requests.
    try (PredictionServiceClient client = PredictionServiceClient.create(settings)) {
      PredictRequest.Builder request =
          PredictRequest.newBuilder().setEndpoint(endpointName.toString());
      if (outputDimensionality.isPresent()) {
        request.setParameters(
            Value.newBuilder()
                .setStructValue(
                    Struct.newBuilder()
                        .putFields("outputDimensionality", valueOf(outputDimensionality.getAsInt()))
                        .build()));
      }
      for (int i = 0; i < texts.size(); i++) {
        request.addInstances(
            Value.newBuilder()
                .setStructValue(
                    Struct.newBuilder()
                        .putFields("content", valueOf(texts.get(i)))
                        .putFields("task_type", valueOf(task))
                        .build()));
      }
      PredictResponse response = client.predict(request.build());
      List<List<Float>> floats = new ArrayList<>();
      for (Value prediction : response.getPredictionsList()) {
        Value embeddings = prediction.getStructValue().getFieldsOrThrow("embeddings");
        Value values = embeddings.getStructValue().getFieldsOrThrow("values");
        floats.add(
            values.getListValue().getValuesList().stream()
                .map(Value::getNumberValue)
                .map(Double::floatValue)
                .collect(toList()));
      }
      return floats;
    }
  }

  private static Value valueOf(String s) {
    return Value.newBuilder().setStringValue(s).build();
  }

  private static Value valueOf(int n) {
    return Value.newBuilder().setNumberValue(n).build();
  }
}

Node.js

이 샘플을 사용해 보기 전에 Vertex AI 빠른 시작: 클라이언트 라이브러리 사용Node.js 설정 안내를 따르세요. 자세한 내용은 Vertex AI Node.js API 참고 문서를 참조하세요.

Vertex AI에 인증하려면 애플리케이션 기본 사용자 인증 정보를 설정합니다. 자세한 내용은 로컬 개발 환경의 인증 설정을 참조하세요.

async function main(
  project,
  model = 'text-embedding-004',
  texts = 'banana bread?;banana muffins?',
  task = 'QUESTION_ANSWERING',
  dimensionality = 0,
  apiEndpoint = 'us-central1-aiplatform.googleapis.com'
) {
  const aiplatform = require('@google-cloud/aiplatform');
  const {PredictionServiceClient} = aiplatform.v1;
  const {helpers} = aiplatform; // helps construct protobuf.Value objects.
  const clientOptions = {apiEndpoint: apiEndpoint};
  const location = 'us-central1';
  const endpoint = `projects/${project}/locations/${location}/publishers/google/models/${model}`;

  async function callPredict() {
    const instances = texts
      .split(';')
      .map(e => helpers.toValue({content: e, task_type: task}));
    const parameters = helpers.toValue(
      dimensionality > 0 ? {outputDimensionality: parseInt(dimensionality)} : {}
    );
    const request = {endpoint, instances, parameters};
    const client = new PredictionServiceClient(clientOptions);
    const [response] = await client.predict(request);
    const predictions = response.predictions;
    const embeddings = predictions.map(p => {
      const embeddingsProto = p.structValue.fields.embeddings;
      const valuesProto = embeddingsProto.structValue.fields.values;
      return valuesProto.listValue.values.map(v => v.numberValue);
    });
    console.log('Got embeddings: \n' + JSON.stringify(embeddings));
  }

  callPredict();
}

고급 사용 사례

다음 예시에서는 몇 가지 고급 기능을 보여줍니다.

  • task_typetitle을 사용하여 임베딩 품질을 개선합니다.
  • 매개변수를 사용하여 API의 동작을 제어합니다.

REST

요청 데이터를 사용하기 전에 다음을 바꿉니다.

  • PROJECT_ID: 프로젝트 ID
  • TEXT: 임베딩을 생성하려는 텍스트입니다. 한도: 텍스트당 최대 3,072개의 토큰으로 구성된 텍스트 5개입니다.
  • TASK_TYPE: 모델이 더 나은 임베딩을 생성할 수 있도록 의도된 다운스트림 애플리케이션을 전달하는 데 사용됩니다.
  • TITLE: 모델이 더 나은 임베딩을 생성하도록 지원하는 데 사용됩니다.
  • AUTO_TRUNCATE: false로 설정하면 토큰 한도를 초과하는 텍스트로 인해 요청이 실패합니다. 기본값은 true입니다.
  • OUTPUT_DIMENSIONALITY: 출력 임베딩 크기를 지정하는 데 사용됩니다. 설정하면 출력 임베딩이 지정된 크기로 잘립니다.

HTTP 메서드 및 URL:

POST https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/publishers/google/models/textembedding-gecko@003:predict

JSON 요청 본문:

{
  "instances": [
    { "content": "TEXT",
      "task_type": "TASK_TYPE",
      "title": "TITLE"
    },
  ],
  "parameters": {
    "autoTruncate": AUTO_TRUNCATE,
    "outputDimensionality": OUTPUT_DIMENSIONALITY
  }
}

요청을 보내려면 다음 옵션 중 하나를 선택합니다.

curl

요청 본문을 request.json 파일에 저장하고 다음 명령어를 실행합니다.

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/publishers/google/models/textembedding-gecko@003:predict"

PowerShell

요청 본문을 request.json 파일에 저장하고 다음 명령어를 실행합니다.

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://us-central1-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/publishers/google/models/textembedding-gecko@003:predict" | Select-Object -Expand Content

다음과 비슷한 JSON 응답이 수신됩니다. values는 공간 절약을 위해 잘렸습니다.

Python

Vertex AI SDK for Python을 설치하거나 업데이트하는 방법은 Vertex AI SDK for Python 설치를 참조하세요. 자세한 내용은 Python API 참고 문서를 확인하세요.

from typing import List, Optional

from vertexai.language_models import TextEmbeddingInput, TextEmbeddingModel


def embed_text(
    texts: list = None,
    task: str = "RETRIEVAL_DOCUMENT",
    dimensionality: Optional[int] = 256,
) -> List[List[float]]:
    """Embeds texts with a pre-trained, foundational model.
    Args:
        texts (List[str]): A list of texts to be embedded.
        task (str): The task type for embedding. Check the available tasks in the model's documentation.
        dimensionality (Optional[int]): The dimensionality of the output embeddings.
    Returns:
        List[List[float]]: A list of lists containing the embedding vectors for each input text
    """
    if texts is None:
        texts = ["banana muffins? ", "banana bread? banana muffins?"]
    model = TextEmbeddingModel.from_pretrained("text-embedding-004")
    inputs = [TextEmbeddingInput(text, task) for text in texts]
    kwargs = dict(output_dimensionality=dimensionality) if dimensionality else {}
    embeddings = model.get_embeddings(inputs, **kwargs)
    return [embedding.values for embedding in embeddings]

Go

이 샘플을 사용해 보기 전에 Vertex AI 빠른 시작: 클라이언트 라이브러리 사용Go 설정 안내를 따르세요. 자세한 내용은 Vertex AI Go API 참고 문서를 참조하세요.

Vertex AI에 인증하려면 애플리케이션 기본 사용자 인증 정보를 설정합니다. 자세한 내용은 로컬 개발 환경의 인증 설정을 참조하세요.

import (
	"context"
	"fmt"
	"io"

	aiplatform "cloud.google.com/go/aiplatform/apiv1"
	"cloud.google.com/go/aiplatform/apiv1/aiplatformpb"

	"google.golang.org/api/option"
	"google.golang.org/protobuf/types/known/structpb"
)

// embedTexts shows how embeddings are set for text-embedding-preview-0409 model
func embedTexts(w io.Writer, project, location string) error {
	// location := "us-central1"
	ctx := context.Background()

	apiEndpoint := fmt.Sprintf("%s-aiplatform.googleapis.com:443", location)
	dimensionality := 5
	model := "text-embedding-004"
	texts := []string{"banana muffins? ", "banana bread? banana muffins?"}

	client, err := aiplatform.NewPredictionClient(ctx, option.WithEndpoint(apiEndpoint))
	if err != nil {
		return err
	}
	defer client.Close()

	endpoint := fmt.Sprintf("projects/%s/locations/%s/publishers/google/models/%s", project, location, model)
	instances := make([]*structpb.Value, len(texts))
	for i, text := range texts {
		instances[i] = structpb.NewStructValue(&structpb.Struct{
			Fields: map[string]*structpb.Value{
				"content":   structpb.NewStringValue(text),
				"task_type": structpb.NewStringValue("QUESTION_ANSWERING"),
			},
		})
	}

	params := structpb.NewStructValue(&structpb.Struct{
		Fields: map[string]*structpb.Value{
			"outputDimensionality": structpb.NewNumberValue(float64(dimensionality)),
		},
	})

	req := &aiplatformpb.PredictRequest{
		Endpoint:   endpoint,
		Instances:  instances,
		Parameters: params,
	}
	resp, err := client.Predict(ctx, req)
	if err != nil {
		return err
	}
	embeddings := make([][]float32, len(resp.Predictions))
	for i, prediction := range resp.Predictions {
		values := prediction.GetStructValue().Fields["embeddings"].GetStructValue().Fields["values"].GetListValue().Values
		embeddings[i] = make([]float32, len(values))
		for j, value := range values {
			embeddings[i][j] = float32(value.GetNumberValue())
		}
	}

	fmt.Fprintf(w, "Dimensionality: %d. Embeddings length: %d", len(embeddings[0]), len(embeddings))
	return nil
}

Java

이 샘플을 사용해 보기 전에 Vertex AI 빠른 시작: 클라이언트 라이브러리 사용Java 설정 안내를 따르세요. 자세한 내용은 Vertex AI Java API 참고 문서를 참조하세요.

Vertex AI에 인증하려면 애플리케이션 기본 사용자 인증 정보를 설정합니다. 자세한 내용은 로컬 개발 환경의 인증 설정을 참조하세요.

import static java.util.stream.Collectors.toList;

import com.google.cloud.aiplatform.v1.EndpointName;
import com.google.cloud.aiplatform.v1.PredictRequest;
import com.google.cloud.aiplatform.v1.PredictResponse;
import com.google.cloud.aiplatform.v1.PredictionServiceClient;
import com.google.cloud.aiplatform.v1.PredictionServiceSettings;
import com.google.protobuf.Struct;
import com.google.protobuf.Value;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import java.util.OptionalInt;
import java.util.regex.Matcher;
import java.util.regex.Pattern;

public class PredictTextEmbeddingsSample {
  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    // Details about text embedding request structure and supported models are available in:
    // https://cloud.google.com/vertex-ai/docs/generative-ai/embeddings/get-text-embeddings
    String endpoint = "us-central1-aiplatform.googleapis.com:443";
    String project = "YOUR_PROJECT_ID";
    String model = "text-embedding-004";
    predictTextEmbeddings(
        endpoint,
        project,
        model,
        List.of("banana bread?", "banana muffins?"),
        "QUESTION_ANSWERING",
        OptionalInt.of(256));
  }

  // Gets text embeddings from a pretrained, foundational model.
  public static List<List<Float>> predictTextEmbeddings(
      String endpoint,
      String project,
      String model,
      List<String> texts,
      String task,
      OptionalInt outputDimensionality)
      throws IOException {
    PredictionServiceSettings settings =
        PredictionServiceSettings.newBuilder().setEndpoint(endpoint).build();
    Matcher matcher = Pattern.compile("^(?<Location>\\w+-\\w+)").matcher(endpoint);
    String location = matcher.matches() ? matcher.group("Location") : "us-central1";
    EndpointName endpointName =
        EndpointName.ofProjectLocationPublisherModelName(project, location, "google", model);

    // You can use this prediction service client for multiple requests.
    try (PredictionServiceClient client = PredictionServiceClient.create(settings)) {
      PredictRequest.Builder request =
          PredictRequest.newBuilder().setEndpoint(endpointName.toString());
      if (outputDimensionality.isPresent()) {
        request.setParameters(
            Value.newBuilder()
                .setStructValue(
                    Struct.newBuilder()
                        .putFields("outputDimensionality", valueOf(outputDimensionality.getAsInt()))
                        .build()));
      }
      for (int i = 0; i < texts.size(); i++) {
        request.addInstances(
            Value.newBuilder()
                .setStructValue(
                    Struct.newBuilder()
                        .putFields("content", valueOf(texts.get(i)))
                        .putFields("task_type", valueOf(task))
                        .build()));
      }
      PredictResponse response = client.predict(request.build());
      List<List<Float>> floats = new ArrayList<>();
      for (Value prediction : response.getPredictionsList()) {
        Value embeddings = prediction.getStructValue().getFieldsOrThrow("embeddings");
        Value values = embeddings.getStructValue().getFieldsOrThrow("values");
        floats.add(
            values.getListValue().getValuesList().stream()
                .map(Value::getNumberValue)
                .map(Double::floatValue)
                .collect(toList()));
      }
      return floats;
    }
  }

  private static Value valueOf(String s) {
    return Value.newBuilder().setStringValue(s).build();
  }

  private static Value valueOf(int n) {
    return Value.newBuilder().setNumberValue(n).build();
  }
}

Node.js

이 샘플을 사용해 보기 전에 Vertex AI 빠른 시작: 클라이언트 라이브러리 사용Node.js 설정 안내를 따르세요. 자세한 내용은 Vertex AI Node.js API 참고 문서를 참조하세요.

Vertex AI에 인증하려면 애플리케이션 기본 사용자 인증 정보를 설정합니다. 자세한 내용은 로컬 개발 환경의 인증 설정을 참조하세요.

async function main(
  project,
  model = 'text-embedding-004',
  texts = 'banana bread?;banana muffins?',
  task = 'QUESTION_ANSWERING',
  dimensionality = 0,
  apiEndpoint = 'us-central1-aiplatform.googleapis.com'
) {
  const aiplatform = require('@google-cloud/aiplatform');
  const {PredictionServiceClient} = aiplatform.v1;
  const {helpers} = aiplatform; // helps construct protobuf.Value objects.
  const clientOptions = {apiEndpoint: apiEndpoint};
  const location = 'us-central1';
  const endpoint = `projects/${project}/locations/${location}/publishers/google/models/${model}`;

  async function callPredict() {
    const instances = texts
      .split(';')
      .map(e => helpers.toValue({content: e, task_type: task}));
    const parameters = helpers.toValue(
      dimensionality > 0 ? {outputDimensionality: parseInt(dimensionality)} : {}
    );
    const request = {endpoint, instances, parameters};
    const client = new PredictionServiceClient(clientOptions);
    const [response] = await client.predict(request);
    const predictions = response.predictions;
    const embeddings = predictions.map(p => {
      const embeddingsProto = p.structValue.fields.embeddings;
      const valuesProto = embeddingsProto.structValue.fields.values;
      return valuesProto.listValue.values.map(v => v.numberValue);
    });
    console.log('Got embeddings: \n' + JSON.stringify(embeddings));
  }

  callPredict();
}

지원되는 텍스트 언어

모든 텍스트 임베딩 모델은 영어 텍스트를 지원하며 이 텍스트를 기반으로 평가되었습니다. textembedding-gecko-multilingual@001text-multilingual-embedding-002 모델은 추가로 다음 언어를 지원하며 다음 언어를 기반으로 평가되었습니다.

  • 평가된 언어: Arabic (ar), Bengali (bn), English (en), Spanish (es), German (de), Persian (fa), Finnish (fi), French (fr), Hindi (hi), Indonesian (id), Japanese (ja), Korean (ko), Russian (ru), Swahili (sw), Telugu (te), Thai (th), Yoruba (yo), Chinese (zh)
  • 지원되는 언어: Afrikaans, Albanian, Amharic, Arabic, Armenian, Azerbaijani, Basque, Belarusiasn, Bengali, Bulgarian, Burmese, Catalan, Cebuano, Chichewa, Chinese, Corsican, Czech, Danish, Dutch, English, Esperanto, Estonian, Filipino, Finnish, French, Galician, Georgian, German, Greek, Gujarati, Haitian Creole, Hausa, Hawaiian, Hebrew, Hindi, Hmong, Hungarian, Icelandic, Igbo, Indonesian, Irish, Italian, Japanese, Javanese, Kannada, Kazakh, Khmer, Korean, Kurdish, Kyrgyz, Lao, Latin, Latvian, Lithuanian, Luxembourgish, Macedonian, Malagasy, Malay, Malayalam, Maltese, Maori, Marathi, Mongolian, Nepali, Norwegian, Pashto, Persian, Polish, Portuguese, Punjabi, Romanian, Russian, Samoan, Scottish Gaelic, Serbian, Shona, Sindhi, Sinhala, Slovak, Slovenian, Somali, Sotho, Spanish, Sundanese, Swahili, Swedish, Tajik, Tamil, Telugu, Thai, Turkish, Ukrainian, Urdu, Uzbek, Vietnamese, Welsh, West Frisian, Xhosa, Yiddish, Yoruba, Zulu.

모델 버전

정식 모델 버전을 사용하려면 모델 버전 번호를 지정합니다(예: text-embedding-004). 각 안정화 버전은 후속 안정화 버전의 출시 날짜로부터 6개월 동안 사용 가능합니다.

다음 표에는 사용 가능한 정식 모델 버전이 포함되어 있습니다.

모델 이름 출시일 지원 중단 날짜
text-embedding-004 2024년 5월 14일 미정
text-multilingual-embedding-002 2024년 5월 14일 미정
textembedding-gecko@003 2023년 12월 12일 2025년 5월 14일
textembedding-gecko-multilingual@001 2023년 11월 2일 2025년 5월 14일
textembedding-gecko@002
(회귀되었지만 계속 지원됨)
2023년 11월 2일 2024년 12월 12일
textembedding-gecko@001
(회귀되었지만 계속 지원됨)
2023년 6월 7일 2024년 11월 2일
multimodalembedding@001 2024년 2월 12일 미정

자세한 내용은 모델 버전 및 수명 주기를 참조하세요.

다음 단계

자세한 문서는 다음을 참조하세요.