Référence d'appel de fonction

L'appel de fonction améliore la capacité des LLM à fournir des réponses pertinentes et contextuelles.

Vous pouvez fournir des fonctions personnalisées à un modèle d'IA générative avec l'API d'appel de fonction. Le modèle n'appelle pas directement ces fonctions, mais génère une sortie de données structurées spécifiant le nom de la fonction et les arguments suggérés.

Cette sortie permet d'appeler des API ou des systèmes d'information externes tels que des bases de données, des systèmes de gestion de la relation client et des référentiels de documents. Le résultat de l'API peut être utilisé par le LLM pour améliorer la qualité des réponses.

Pour en savoir plus sur les concepts liés aux appels de fonction, consultez Appels de fonction.

Modèles compatibles :

Modèle Version
Gemini 1.5 Flash gemini-1.5-flash-002
gemini-1.5-flash-001
Gemini 1.5 Pro gemini-1.5-pro-002
gemini-1.5-pro-001
Gemini 1.0 Pro gemini-1.0-pro-001
gemini-1.0-pro-002

Limites :

  • Le nombre maximal de déclarations de fonction pouvant être fournies avec la requête est de 128.
  • FunctionCallingConfig.Mode.ANY n'est disponible qu'avec les modèles Gemini 1.5 Pro et Gemini 1.5 Flash.

Exemple de syntaxe

Syntaxe permettant d'envoyer une requête d'API d'appel de fonction.

curl

curl -X POST \
  -H "Authorization: Bearer $(gcloud auth print-access-token)" \
  -H "Content-Type: application/json" \

https://${LOCATION}-aiplatform.googleapis.com/v1/projects/${PROJECT_ID}/locations/${LOCATION}/publishers/google/models/${MODEL_ID}:generateContent \
-d '{
  "contents": [{
    ...
  }],
  "tools": [{
    "function_declarations": [
      {
        ...
      }
    ]
  }]
}'

Python

gemini_model = GenerativeModel(
    MODEL_ID,
    generation_config=generation_config,
    tools=[
        Tool(
            function_declarations=[
                FunctionDeclaration(
                    ...
                )
            ]
        )
    ],
)

Liste des paramètres

Consultez des exemples pour en savoir plus sur l'implémentation.

FunctionDeclaration

Définit une fonction pour laquelle le modèle peut générer des entrées JSON en fonction des spécifications OpenAPI 3.0.

Paramètres

name

string

Nom de la fonction à appeler. Il doit commencer par une lettre ou un trait de soulignement. Il doit être composé de a-z, A-Z, 0-9, ou contenir des traits de soulignement et des tirets, avec une longueur maximale de 64.

description

Facultatif : string.

Description et objectif de la fonction. Le modèle s'en sert pour décider s'il convient ou non d'appeler la fonction et de quelle façon. Pour des résultats optimaux, nous vous recommandons d'inclure une description.

parameters

Facultatif : Schema.

Décrit les paramètres de la fonction au format d'objet de schéma JSON OpenAPI : Spécification OpenAPI 3.0.

response

Facultatif : Schema.

Décrit la sortie de la fonction au format d'objet de schéma JSON OpenAPI : Spécification OpenAPI 3.0.

Pour en savoir plus, consultez la page Appel de fonction.

Schema

Définit le format des données d'entrée et de sortie dans un appel de fonction en se basant sur la spécification de schéma OpenAPI 3.0.

Paramètres
type

string

Enum. Type des données. Doit être l'un des suivants:

  • STRING
  • INTEGER
  • BOOLEAN
  • NUMBER
  • ARRAY
  • OBJECT
description

Facultatif : string.

Description des données.

enum

Facultatif : string[].

Valeurs possibles de l'élément de type Type.STRING avec le format enum.

items

Facultatif : Schema[].

Schéma des éléments de Type.ARRAY

properties

Facultatif : Schema.

Schéma des propriétés de Type.OBJECT

required

Facultatif : string[].

Propriétés obligatoires de Type.OBJECT.

nullable

Facultatif : bool.

Indique si la valeur peut être null.

FunctionCallingConfig

FunctionCallingConfig contrôle le comportement du modèle et détermine le type de fonction à appeler.

Paramètres

mode

Facultatif : enum/string[].

  • AUTO : comportement par défaut du modèle. Le modèle peut effectuer des prédictions sous la forme d'un appel de fonction ou d'une réponse en langage naturel. Le modèle décide de la forme à utiliser en fonction du contexte.
  • NONE : le modèle ne fait aucune prédiction sous forme d'appels de fonction.
  • ANY : le modèle est contraint de prédire uniquement les appels de fonction. Ce mode est également appelé "appel de fonction avec génération contrôlée" ou "appel de fonction forcé".

allowed_function_names

Facultatif : string[].

Noms des fonctions à appeler. Défini uniquement lorsque mode est ANY. Les noms de fonction doivent correspondre à [FunctionDeclaration.name]. Lorsque le mode est défini sur ANY, le modèle prédit un appel de fonction à partir de l'ensemble de noms de fonctions fournis.

Exemples

Envoyer une déclaration de fonction

L'exemple suivant est un exemple de base d'envoi d'une requête et d'une déclaration de fonction au modèle.

REST

Avant d'utiliser les données de requête ci-dessous, effectuez les remplacements suivants :

  • PROJECT_ID : l'ID de votre projet.
  • LOCATION : région dans laquelle traiter la requête.
  • MODEL_ID : ID du modèle en cours de traitement.
  • ROLE : identité de l'entité qui crée le message.
  • TEXT : requête à envoyer au modèle.
  • NAME : nom de la fonction à appeler.
  • DESCRIPTION : description et objectif de la fonction.
  • Pour les autres champs, consultez le tableau Liste des paramètres.

Méthode HTTP et URL :

POST https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/publishers/google/models/MODEL_ID:generateContent

Corps JSON de la requête :

{
  "contents": [{
    "role": "ROLE",
    "parts": [{
      "text": "TEXT"
    }]
  }],
  "tools": [{
    "function_declarations": [
      {
        "name": "NAME",
        "description": "DESCRIPTION",
        "parameters": {
          "type": "TYPE",
          "properties": {
            "location": {
              "type": "TYPE",
              "description": "DESCRIPTION"
            }
          },
          "required": [
            "location"
          ]
        }
      }
    ]
  }]
}

Pour envoyer votre requête, choisissez l'une des options suivantes :

curl

Enregistrez le corps de la requête dans un fichier nommé request.json, puis exécutez la commande suivante :

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/publishers/google/models/MODEL_ID:generateContent"

PowerShell

Enregistrez le corps de la requête dans un fichier nommé request.json, puis exécutez la commande suivante :

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/publishers/google/models/MODEL_ID:generateContent" | Select-Object -Expand Content

Exemple de commande curl

PROJECT_ID=myproject
LOCATION=us-central1
MODEL_ID=gemini-1.0-pro-002

curl -X POST \
  -H "Authorization: Bearer $(gcloud auth print-access-token)" \
  -H "Content-Type: application/json" \
  https://${LOCATION}-aiplatform.googleapis.com/v1/projects/${PROJECT_ID}/locations/${LOCATION}/publishers/google/models/${MODEL_ID}:generateContent \
  -d '{
    "contents": [{
      "role": "user",
      "parts": [{
        "text": "What is the weather in Boston?"
      }]
    }],
    "tools": [{
      "functionDeclarations": [
        {
          "name": "get_current_weather",
          "description": "Get the current weather in a given location",
          "parameters": {
            "type": "object",
            "properties": {
              "location": {
                "type": "string",
                "description": "The city and state, e.g. San Francisco, CA or a zip code e.g. 95616"
              }
            },
            "required": [
              "location"
            ]
          }
        }
      ]
    }]
  }'

Python

import vertexai
from vertexai.generative_models import (
    Content,
    FunctionDeclaration,
    GenerationConfig,
    GenerativeModel,
    Part,
    Tool,
)

# TODO(developer): Update & uncomment below line
# PROJECT_ID = "your-project-id"

# Initialize Vertex AI
vertexai.init(project=PROJECT_ID, location="us-central1")

# Initialize Gemini model
model = GenerativeModel("gemini-1.5-flash-002")

# Define the user's prompt in a Content object that we can reuse in model calls
user_prompt_content = Content(
    role="user",
    parts=[
        Part.from_text("What is the weather like in Boston?"),
    ],
)

# Specify a function declaration and parameters for an API request
function_name = "get_current_weather"
get_current_weather_func = FunctionDeclaration(
    name=function_name,
    description="Get the current weather in a given location",
    # Function parameters are specified in JSON schema format
    parameters={
        "type": "object",
        "properties": {"location": {"type": "string", "description": "Location"}},
    },
)

# Define a tool that includes the above get_current_weather_func
weather_tool = Tool(
    function_declarations=[get_current_weather_func],
)

# Send the prompt and instruct the model to generate content using the Tool that you just created
response = model.generate_content(
    user_prompt_content,
    generation_config=GenerationConfig(temperature=0),
    tools=[weather_tool],
)
function_call = response.candidates[0].function_calls[0]
print(function_call)

# Check the function name that the model responded with, and make an API call to an external system
if function_call.name == function_name:
    # Extract the arguments to use in your API call
    location = function_call.args["location"]  # noqa: F841

    # Here you can use your preferred method to make an API request to fetch the current weather, for example:
    # api_response = requests.post(weather_api_url, data={"location": location})

    # In this example, we'll use synthetic data to simulate a response payload from an external API
    api_response = """{ "location": "Boston, MA", "temperature": 38, "description": "Partly Cloudy",
                    "icon": "partly-cloudy", "humidity": 65, "wind": { "speed": 10, "direction": "NW" } }"""

# Return the API response to Gemini so it can generate a model response or request another function call
response = model.generate_content(
    [
        user_prompt_content,  # User prompt
        response.candidates[0].content,  # Function call response
        Content(
            parts=[
                Part.from_function_response(
                    name=function_name,
                    response={
                        "content": api_response,  # Return the API response to Gemini
                    },
                ),
            ],
        ),
    ],
    tools=[weather_tool],
)

# Get the model response
print(response.text)
# Example response:
# The weather in Boston is partly cloudy with a temperature of 38 degrees Fahrenheit.
# The humidity is 65% and the wind is blowing from the northwest at 10 mph.

Node.js

const {
  VertexAI,
  FunctionDeclarationSchemaType,
} = require('@google-cloud/vertexai');

const functionDeclarations = [
  {
    function_declarations: [
      {
        name: 'get_current_weather',
        description: 'get weather in a given location',
        parameters: {
          type: FunctionDeclarationSchemaType.OBJECT,
          properties: {
            location: {type: FunctionDeclarationSchemaType.STRING},
            unit: {
              type: FunctionDeclarationSchemaType.STRING,
              enum: ['celsius', 'fahrenheit'],
            },
          },
          required: ['location'],
        },
      },
    ],
  },
];

/**
 * TODO(developer): Update these variables before running the sample.
 */
async function functionCallingBasic(
  projectId = 'PROJECT_ID',
  location = 'us-central1',
  model = 'gemini-1.5-flash-001'
) {
  // Initialize Vertex with your Cloud project and location
  const vertexAI = new VertexAI({project: projectId, location: location});

  // Instantiate the model
  const generativeModel = vertexAI.preview.getGenerativeModel({
    model: model,
  });

  const request = {
    contents: [
      {role: 'user', parts: [{text: 'What is the weather in Boston?'}]},
    ],
    tools: functionDeclarations,
  };
  const result = await generativeModel.generateContent(request);
  console.log(JSON.stringify(result.response.candidates[0].content));
}

Java

import com.google.cloud.vertexai.VertexAI;
import com.google.cloud.vertexai.api.Content;
import com.google.cloud.vertexai.api.FunctionDeclaration;
import com.google.cloud.vertexai.api.GenerateContentResponse;
import com.google.cloud.vertexai.api.Schema;
import com.google.cloud.vertexai.api.Tool;
import com.google.cloud.vertexai.api.Type;
import com.google.cloud.vertexai.generativeai.ChatSession;
import com.google.cloud.vertexai.generativeai.ContentMaker;
import com.google.cloud.vertexai.generativeai.GenerativeModel;
import com.google.cloud.vertexai.generativeai.PartMaker;
import com.google.cloud.vertexai.generativeai.ResponseHandler;
import java.io.IOException;
import java.util.Arrays;
import java.util.Collections;

public class FunctionCalling {
  public static void main(String[] args) throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "your-google-cloud-project-id";
    String location = "us-central1";
    String modelName = "gemini-1.5-flash-001";

    String promptText = "What's the weather like in Paris?";

    whatsTheWeatherLike(projectId, location, modelName, promptText);
  }

  // A request involving the interaction with an external tool
  public static String whatsTheWeatherLike(String projectId, String location,
                                           String modelName, String promptText)
      throws IOException {
    // Initialize client that will be used to send requests.
    // This client only needs to be created once, and can be reused for multiple requests.
    try (VertexAI vertexAI = new VertexAI(projectId, location)) {

      FunctionDeclaration functionDeclaration = FunctionDeclaration.newBuilder()
          .setName("getCurrentWeather")
          .setDescription("Get the current weather in a given location")
          .setParameters(
              Schema.newBuilder()
                  .setType(Type.OBJECT)
                  .putProperties("location", Schema.newBuilder()
                      .setType(Type.STRING)
                      .setDescription("location")
                      .build()
                  )
                  .addRequired("location")
                  .build()
          )
          .build();

      System.out.println("Function declaration:");
      System.out.println(functionDeclaration);

      // Add the function to a "tool"
      Tool tool = Tool.newBuilder()
          .addFunctionDeclarations(functionDeclaration)
          .build();

      // Start a chat session from a model, with the use of the declared function.
      GenerativeModel model = new GenerativeModel(modelName, vertexAI)
          .withTools(Arrays.asList(tool));
      ChatSession chat = model.startChat();

      System.out.println(String.format("Ask the question: %s", promptText));
      GenerateContentResponse response = chat.sendMessage(promptText);

      // The model will most likely return a function call to the declared
      // function `getCurrentWeather` with "Paris" as the value for the
      // argument `location`.
      System.out.println("\nPrint response: ");
      System.out.println(ResponseHandler.getContent(response));

      // Provide an answer to the model so that it knows what the result
      // of a "function call" is.
      Content content =
          ContentMaker.fromMultiModalData(
              PartMaker.fromFunctionResponse(
                  "getCurrentWeather",
                  Collections.singletonMap("currentWeather", "sunny")));
      System.out.println("Provide the function response: ");
      System.out.println(content);
      response = chat.sendMessage(content);

      // See what the model replies now
      System.out.println("Print response: ");
      String finalAnswer = ResponseHandler.getText(response);
      System.out.println(finalAnswer);

      return finalAnswer;
    }
  }
}

Go

import (
	"context"
	"encoding/json"
	"errors"
	"fmt"
	"io"

	"cloud.google.com/go/vertexai/genai"
)

// functionCallsBasic opens a chat session and sends 2 messages to the model:
// - first, to convert a text into a structured function call request
// - second, to convert a structured function call response into natural language.
// Writes output of second call to w.
func functionCallsBasic(w io.Writer, projectID, location, modelName string) error {
	// location := "us-central1"
	// modelName := "gemini-1.5-flash-001"
	ctx := context.Background()
	client, err := genai.NewClient(ctx, projectID, location)
	if err != nil {
		return fmt.Errorf("unable to create client: %w", err)
	}
	defer client.Close()

	model := client.GenerativeModel(modelName)

	// Build an OpenAPI schema, in memory
	params := &genai.Schema{
		Type: genai.TypeObject,
		Properties: map[string]*genai.Schema{
			"location": {
				Type:        genai.TypeString,
				Description: "location",
			},
		},
	}
	fundecl := &genai.FunctionDeclaration{
		Name:        "getCurrentWeather",
		Description: "Get the current weather in a given location",
		Parameters:  params,
	}
	model.Tools = []*genai.Tool{
		{FunctionDeclarations: []*genai.FunctionDeclaration{fundecl}},
	}

	chat := model.StartChat()

	resp, err := chat.SendMessage(ctx, genai.Text("What's the weather like in Boston?"))
	if err != nil {
		return err
	}
	if len(resp.Candidates) == 0 ||
		len(resp.Candidates[0].Content.Parts) == 0 {
		return errors.New("empty response from model")
	}

	// The model has returned a function call to the declared function `getCurrentWeather`
	// with a value for the argument `location`.
	_, err = json.MarshalIndent(resp.Candidates[0].Content.Parts[0], "", "  ")
	if err != nil {
		return fmt.Errorf("json.MarshalIndent: %w", err)
	}

	// In this example, we'll use synthetic data to simulate a response payload from an external API
	weather := map[string]string{
		"location":    "Boston",
		"temperature": "38",
		"description": "Partly Cloudy",
		"icon":        "partly-cloudy",
		"humidity":    "65",
		"wind":        "{\"speed\": \"10\", \"direction\": \"NW\"}",
	}
	weather_json, _ := json.Marshal(weather)

	// Create a function call response, to simulate the result of a call to a
	// real service
	funresp := &genai.FunctionResponse{
		Name: "getCurrentWeather",
		Response: map[string]any{
			"currentWeather": weather_json,
		},
	}
	_, err = json.MarshalIndent(funresp, "", "  ")
	if err != nil {
		return fmt.Errorf("json.MarshalIndent: %w", err)
	}

	// And provide the function call response to the model
	resp, err = chat.SendMessage(ctx, funresp)
	if err != nil {
		return err
	}
	if len(resp.Candidates) == 0 ||
		len(resp.Candidates[0].Content.Parts) == 0 {
		return errors.New("empty response from model")
	}

	// The model has taken the function call response as input, and has
	// reformulated the response to the user.
	content, err := json.MarshalIndent(resp.Candidates[0].Content.Parts[0], "", "  ")
	if err != nil {
		return fmt.Errorf("json.MarshalIndent: %w", err)
	}

	fmt.Fprintf(w, "generated summary:\n%s\n", content)
	return nil
}

REST (OpenAI)

Vous pouvez appeler l'API d'appel de fonction à l'aide de la bibliothèque OpenAI. Pour en savoir plus, consultez la page Appeler des modèles Vertex AI à l'aide de la bibliothèque OpenAI.

Avant d'utiliser les données de requête ci-dessous, effectuez les remplacements suivants :

  • PROJECT_ID : l'ID de votre projet.
  • LOCATION : région dans laquelle traiter la requête.
  • MODEL_ID : ID du modèle en cours de traitement.

Méthode HTTP et URL :

POST https://LOCATION-aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/LOCATION/endpoints/openapi/chat/completions

Corps JSON de la requête :

{
  "model": "google/MODEL_ID",
  "messages": [
    {
      "role": "user",
      "content": "What is the weather in Boston?"
    }
  ],
  "tools": [
    {
      "type": "function",
      "function": {
        "name": "get_current_weather",
        "description": "Get the current weather in a given location",
        "parameters": {
          "type": "OBJECT",
          "properties": {
            "location": {
              "type": "string",
              "description": "The city and state, e.g. San Francisco, CA or a zip code e.g. 95616"
            }
           },
          "required": ["location"]
        }
      }
    }
  ]
}

Pour envoyer votre requête, choisissez l'une des options suivantes :

curl

Enregistrez le corps de la requête dans un fichier nommé request.json, puis exécutez la commande suivante :

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION-aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/LOCATION/endpoints/openapi/chat/completions"

PowerShell

Enregistrez le corps de la requête dans un fichier nommé request.json, puis exécutez la commande suivante :

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/LOCATION/endpoints/openapi/chat/completions" | Select-Object -Expand Content

Python (OpenAI)

Vous pouvez appeler l'API d'appel de fonction à l'aide de la bibliothèque OpenAI. Pour en savoir plus, consultez la page Appeler des modèles Vertex AI à l'aide de la bibliothèque OpenAI.

import vertexai
import openai

from google.auth import default, transport

# TODO(developer): Update & uncomment below line
# PROJECT_ID = "your-project-id"
location = "us-central1"

vertexai.init(project=PROJECT_ID, location=location)

# Programmatically get an access token
credentials, _ = default(scopes=["https://www.googleapis.com/auth/cloud-platform"])
auth_request = transport.requests.Request()
credentials.refresh(auth_request)

# # OpenAI Client
client = openai.OpenAI(
    base_url=f"https://{location}-aiplatform.googleapis.com/v1beta1/projects/{PROJECT_ID}/locations/{location}/endpoints/openapi",
    api_key=credentials.token,
)

tools = [
    {
        "type": "function",
        "function": {
            "name": "get_current_weather",
            "description": "Get the current weather in a given location",
            "parameters": {
                "type": "object",
                "properties": {
                    "location": {
                        "type": "string",
                        "description": "The city and state, e.g. San Francisco, CA or a zip code e.g. 95616",
                    },
                },
                "required": ["location"],
            },
        },
    }
]

messages = []
messages.append(
    {
        "role": "system",
        "content": "Don't make assumptions about what values to plug into functions. Ask for clarification if a user request is ambiguous.",
    }
)
messages.append({"role": "user", "content": "What is the weather in Boston?"})

response = client.chat.completions.create(
    model="google/gemini-1.5-flash-001",
    messages=messages,
    tools=tools,
)

print("Function:", response.choices[0].message.tool_calls[0].id)
print("Arguments:", response.choices[0].message.tool_calls[0].function.arguments)
# Example response:
# Function: get_current_weather
# Arguments: {"location":"Boston"}

Envoyer une déclaration de fonction avec FunctionCallingConfig

L'exemple suivant montre comment transmettre un FunctionCallingConfig au modèle.

functionCallingConfig garantit que la sortie du modèle est toujours un appel de fonction spécifique. Pour configurer :

  • Définissez la fonction appelant mode sur ANY.
  • Spécifiez les noms de fonction que vous souhaitez utiliser dans allowed_function_names. Si allowed_function_names est vide, n'importe laquelle des fonctions fournies peut être renvoyée.

REST

PROJECT_ID=myproject
LOCATION=us-central1
MODEL_ID=gemini-1.5-pro-001

curl -X POST \
  -H "Authorization: Bearer $(gcloud auth print-access-token)" \
  -H "Content-Type: application/json" \
  https://${LOCATION}-aiplatform.googleapis.com/v1beta1/projects/${PROJECT_ID}/locations/${LOCATION}/publishers/google/models/${MODEL_ID}:generateContent \
  -d '{
    "contents": [{
      "role": "user",
      "parts": [{
        "text": "Do you have the White Pixel 8 Pro 128GB in stock in the US?"
      }]
    }],
    "tools": [{
      "functionDeclarations": [
        {
          "name": "get_product_sku",
          "description": "Get the available inventory for a Google products, e.g: Pixel phones, Pixel Watches, Google Home etc",
          "parameters": {
            "type": "object",
            "properties": {
              "product_name": {"type": "string", "description": "Product name"}
            }
          }
        },
        {
          "name": "get_store_location",
          "description": "Get the location of the closest store",
          "parameters": {
            "type": "object",
            "properties": {
              "location": {"type": "string", "description": "Location"}
            },
          }
        }
      ]
    }],
    "toolConfig": {
        "functionCallingConfig": {
            "mode":"ANY",
            "allowedFunctionNames": ["get_product_sku"]
      }
    },
    "generationConfig": {
      "temperature": 0.95,
      "topP": 1.0,
      "maxOutputTokens": 8192
    }
  }'

Python

import vertexai
from vertexai.preview.generative_models import (
    FunctionDeclaration,
    GenerativeModel,
    Tool,
    ToolConfig,
)

# TODO(developer): Update & uncomment below line
# PROJECT_ID = "your-project-id"

# Initialize Vertex AI
vertexai.init(project=PROJECT_ID, location="us-central1")

# Specify a function declaration and parameters for an API request
get_product_sku_func = FunctionDeclaration(
    name="get_product_sku",
    description="Get the available inventory for a Google products, e.g: Pixel phones, Pixel Watches, Google Home etc",
    # Function parameters are specified in JSON schema format
    parameters={
        "type": "object",
        "properties": {
            "product_name": {"type": "string", "description": "Product name"}
        },
    },
)

# Specify another function declaration and parameters for an API request
get_store_location_func = FunctionDeclaration(
    name="get_store_location",
    description="Get the location of the closest store",
    # Function parameters are specified in JSON schema format
    parameters={
        "type": "object",
        "properties": {"location": {"type": "string", "description": "Location"}},
    },
)

# Define a tool that includes the above functions
retail_tool = Tool(
    function_declarations=[
        get_product_sku_func,
        get_store_location_func,
    ],
)

# Define a tool config for the above functions
retail_tool_config = ToolConfig(
    function_calling_config=ToolConfig.FunctionCallingConfig(
        # ANY mode forces the model to predict a function call
        mode=ToolConfig.FunctionCallingConfig.Mode.ANY,
        # List of functions that can be returned when the mode is ANY.
        # If the list is empty, any declared function can be returned.
        allowed_function_names=["get_product_sku"],
    )
)

model = GenerativeModel(
    model_name="gemini-1.5-flash-002",
    tools=[retail_tool],
    tool_config=retail_tool_config,
)
response = model.generate_content(
    "Do you have the Pixel 8 Pro 128GB in stock?",
)

print(response.candidates[0].function_calls)
# Example response:
# [
# name: "get_product_sku"
# args {
#   fields { key: "product_name" value { string_value: "Pixel 8 Pro 128GB" }}
#   }
# ]

Node.js

const {
  VertexAI,
  FunctionDeclarationSchemaType,
} = require('@google-cloud/vertexai');

const functionDeclarations = [
  {
    function_declarations: [
      {
        name: 'get_product_sku',
        description:
          'Get the available inventory for a Google products, e.g: Pixel phones, Pixel Watches, Google Home etc',
        parameters: {
          type: FunctionDeclarationSchemaType.OBJECT,
          properties: {
            productName: {type: FunctionDeclarationSchemaType.STRING},
          },
        },
      },
      {
        name: 'get_store_location',
        description: 'Get the location of the closest store',
        parameters: {
          type: FunctionDeclarationSchemaType.OBJECT,
          properties: {
            location: {type: FunctionDeclarationSchemaType.STRING},
          },
        },
      },
    ],
  },
];

const toolConfig = {
  function_calling_config: {
    mode: 'ANY',
    allowed_function_names: ['get_product_sku'],
  },
};

const generationConfig = {
  temperature: 0.95,
  topP: 1.0,
  maxOutputTokens: 8192,
};

/**
 * TODO(developer): Update these variables before running the sample.
 */
async function functionCallingAdvanced(
  projectId = 'PROJECT_ID',
  location = 'us-central1',
  model = 'gemini-1.5-flash-001'
) {
  // Initialize Vertex with your Cloud project and location
  const vertexAI = new VertexAI({project: projectId, location: location});

  // Instantiate the model
  const generativeModel = vertexAI.preview.getGenerativeModel({
    model: model,
  });

  const request = {
    contents: [
      {
        role: 'user',
        parts: [
          {text: 'Do you have the White Pixel 8 Pro 128GB in stock in the US?'},
        ],
      },
    ],
    tools: functionDeclarations,
    tool_config: toolConfig,
    generation_config: generationConfig,
  };
  const result = await generativeModel.generateContent(request);
  console.log(JSON.stringify(result.response.candidates[0].content));
}

Go

import (
	"context"
	"encoding/json"
	"errors"
	"fmt"
	"io"

	"cloud.google.com/go/vertexai/genai"
)

// functionCallsChat opens a chat session and sends 4 messages to the model:
// - convert a first text question into a structured function call request
// - convert the first structured function call response into natural language
// - convert a second text question into a structured function call request
// - convert the second structured function call response into natural language
func functionCallsChat(w io.Writer, projectID, location, modelName string) error {
	// location := "us-central1"
	// modelName := "gemini-1.5-flash-001"
	ctx := context.Background()
	client, err := genai.NewClient(ctx, projectID, location)
	if err != nil {
		return fmt.Errorf("unable to create client: %w", err)
	}
	defer client.Close()

	model := client.GenerativeModel(modelName)

	// Build an OpenAPI schema, in memory
	paramsProduct := &genai.Schema{
		Type: genai.TypeObject,
		Properties: map[string]*genai.Schema{
			"productName": {
				Type:        genai.TypeString,
				Description: "Product name",
			},
		},
	}
	fundeclProductInfo := &genai.FunctionDeclaration{
		Name:        "getProductSku",
		Description: "Get the SKU for a product",
		Parameters:  paramsProduct,
	}
	paramsStore := &genai.Schema{
		Type: genai.TypeObject,
		Properties: map[string]*genai.Schema{
			"location": {
				Type:        genai.TypeString,
				Description: "Location",
			},
		},
	}
	fundeclStoreLocation := &genai.FunctionDeclaration{
		Name:        "getStoreLocation",
		Description: "Get the location of the closest store",
		Parameters:  paramsStore,
	}
	model.Tools = []*genai.Tool{
		{FunctionDeclarations: []*genai.FunctionDeclaration{
			fundeclProductInfo,
			fundeclStoreLocation,
		}},
	}
	model.SetTemperature(0.0)

	chat := model.StartChat()

	// Send a prompt for the first conversation turn that should invoke the getProductSku function
	prompt := "Do you have the Pixel 8 Pro in stock?"
	fmt.Fprintf(w, "Question: %s\n", prompt)
	resp, err := chat.SendMessage(ctx, genai.Text(prompt))
	if err != nil {
		return err
	}
	if len(resp.Candidates) == 0 ||
		len(resp.Candidates[0].Content.Parts) == 0 {
		return errors.New("empty response from model")
	}

	// The model has returned a function call to the declared function `getProductSku`
	// with a value for the argument `productName`.
	jsondata, err := json.MarshalIndent(resp.Candidates[0].Content.Parts[0], "\t", "  ")
	if err != nil {
		return fmt.Errorf("json.MarshalIndent: %w", err)
	}
	fmt.Fprintf(w, "function call generated by the model:\n\t%s\n", string(jsondata))

	// Create a function call response, to simulate the result of a call to a
	// real service
	funresp := &genai.FunctionResponse{
		Name: "getProductSku",
		Response: map[string]any{
			"sku":      "GA04834-US",
			"in_stock": "yes",
		},
	}
	jsondata, err = json.MarshalIndent(funresp, "\t", "  ")
	if err != nil {
		return fmt.Errorf("json.MarshalIndent: %w", err)
	}
	fmt.Fprintf(w, "function call response sent to the model:\n\t%s\n\n", string(jsondata))

	// And provide the function call response to the model
	resp, err = chat.SendMessage(ctx, funresp)
	if err != nil {
		return err
	}
	if len(resp.Candidates) == 0 ||
		len(resp.Candidates[0].Content.Parts) == 0 {
		return errors.New("empty response from model")
	}

	// The model has taken the function call response as input, and has
	// reformulated the response to the user.
	jsondata, err = json.MarshalIndent(resp.Candidates[0].Content.Parts[0], "\t", "  ")
	if err != nil {
		return fmt.Errorf("json.MarshalIndent: %w", err)
	}
	fmt.Fprintf(w, "Answer generated by the model:\n\t%s\n\n", string(jsondata))

	// Send a prompt for the second conversation turn that should invoke the getStoreLocation function
	prompt2 := "Is there a store in Mountain View, CA that I can visit to try it out?"
	fmt.Fprintf(w, "Question: %s\n", prompt)

	resp, err = chat.SendMessage(ctx, genai.Text(prompt2))
	if err != nil {
		return err
	}
	if len(resp.Candidates) == 0 ||
		len(resp.Candidates[0].Content.Parts) == 0 {
		return errors.New("empty response from model")
	}

	// The model has returned a function call to the declared function `getStoreLocation`
	// with a value for the argument `store`.
	jsondata, err = json.MarshalIndent(resp.Candidates[0].Content.Parts[0], "\t", "  ")
	if err != nil {
		return fmt.Errorf("json.MarshalIndent: %w", err)
	}
	fmt.Fprintf(w, "function call generated by the model:\n\t%s\n", string(jsondata))

	// Create a function call response, to simulate the result of a call to a
	// real service
	funresp = &genai.FunctionResponse{
		Name: "getStoreLocation",
		Response: map[string]any{
			"store": "2000 N Shoreline Blvd, Mountain View, CA 94043, US",
		},
	}
	jsondata, err = json.MarshalIndent(funresp, "\t", "  ")
	if err != nil {
		return fmt.Errorf("json.MarshalIndent: %w", err)
	}
	fmt.Fprintf(w, "function call response sent to the model:\n\t%s\n\n", string(jsondata))

	// And provide the function call response to the model
	resp, err = chat.SendMessage(ctx, funresp)
	if err != nil {
		return err
	}
	if len(resp.Candidates) == 0 ||
		len(resp.Candidates[0].Content.Parts) == 0 {
		return errors.New("empty response from model")
	}

	// The model has taken the function call response as input, and has
	// reformulated the response to the user.
	jsondata, err = json.MarshalIndent(resp.Candidates[0].Content.Parts[0], "\t", "  ")
	if err != nil {
		return fmt.Errorf("json.MarshalIndent: %w", err)
	}
	fmt.Fprintf(w, "Answer generated by the model:\n\t%s\n\n", string(jsondata))
	return nil
}

REST (OpenAI)

Vous pouvez appeler l'API d'appel de fonction à l'aide de la bibliothèque OpenAI. Pour en savoir plus, consultez la page Appeler des modèles Vertex AI à l'aide de la bibliothèque OpenAI.

Avant d'utiliser les données de requête ci-dessous, effectuez les remplacements suivants :

  • PROJECT_ID : l'ID de votre projet.
  • LOCATION : région dans laquelle traiter la requête.
  • MODEL_ID : ID du modèle en cours de traitement.

Méthode HTTP et URL :

POST https://LOCATION-aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/LOCATION/endpoints/openapi/chat/completions

Corps JSON de la requête :

{
  "model": "google/MODEL_ID",
  "messages": [
  {
    "role": "user",
    "content": "What is the weather in Boston?"
  }
],
"tools": [
  {
    "type": "function",
    "function": {
      "name": "get_current_weather",
      "description": "Get the current weather in a given location",
      "parameters": {
        "type": "OBJECT",
        "properties": {
          "location": {
            "type": "string",
            "description": "The city and state, e.g. San Francisco, CA or a zip code e.g. 95616"
          }
         },
        "required": ["location"]
      }
    }
  }
],
"tool_choice": "auto"
}

Pour envoyer votre requête, choisissez l'une des options suivantes :

curl

Enregistrez le corps de la requête dans un fichier nommé request.json, puis exécutez la commande suivante :

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION-aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/LOCATION/endpoints/openapi/chat/completions"

PowerShell

Enregistrez le corps de la requête dans un fichier nommé request.json, puis exécutez la commande suivante :

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION-aiplatform.googleapis.com/v1beta1/projects/PROJECT_ID/locations/LOCATION/endpoints/openapi/chat/completions" | Select-Object -Expand Content

Python (OpenAI)

Vous pouvez appeler l'API d'appel de fonction à l'aide de la bibliothèque OpenAI. Pour en savoir plus, consultez la page Appeler des modèles Vertex AI à l'aide de la bibliothèque OpenAI.

import vertexai
import openai

from google.auth import default, transport

# TODO(developer): Update & uncomment below line
# PROJECT_ID = "your-project-id"
location = "us-central1"

vertexai.init(project=PROJECT_ID, location=location)

# Programmatically get an access token
credentials, _ = default(scopes=["https://www.googleapis.com/auth/cloud-platform"])
auth_request = transport.requests.Request()
credentials.refresh(auth_request)

# OpenAI Client
client = openai.OpenAI(
    base_url=f"https://{location}-aiplatform.googleapis.com/v1beta1/projects/{PROJECT_ID}/locations/{location}/endpoints/openapi",
    api_key=credentials.token,
)

tools = [
    {
        "type": "function",
        "function": {
            "name": "get_current_weather",
            "description": "Get the current weather in a given location",
            "parameters": {
                "type": "object",
                "properties": {
                    "location": {
                        "type": "string",
                        "description": "The city and state, e.g. San Francisco, CA or a zip code e.g. 95616",
                    },
                },
                "required": ["location"],
            },
        },
    }
]

messages = []
messages.append(
    {
        "role": "system",
        "content": "Don't make assumptions about what values to plug into functions. Ask for clarification if a user request is ambiguous.",
    }
)
messages.append({"role": "user", "content": "What is the weather in Boston, MA?"})

response = client.chat.completions.create(
    model="google/gemini-1.5-flash-002",
    messages=messages,
    tools=tools,
    tool_choice="auto",
)

print("Function:", response.choices[0].message.tool_calls[0].id)
print("Arguments:", response.choices[0].message.tool_calls[0].function.arguments)
# Example response:
# Function: get_current_weather
# Arguments: {"location":"Boston"}

Étape suivante

Pour obtenir une documentation détaillée, consultez les pages suivantes :