명확하고 구체적인 요청 사항 제공

수행할 작업에 대한 요청 사항을 모델에 제공하는 것이 모델 동작을 효과적이고 효율적으로 맞춤설정하는 방법입니다. 안내를 명확하고 간결하며 직접적이게 하면서 필요한 맥락을 제공하고 원하는 출력을 간략히 설명합니다. 안내는 단계별 안내 목록처럼 간단할 수 있거나 사용자 경험과 사고방식을 매핑하는 것만큼 복잡할 수도 있습니다.

이 전략의 핵심 사항은 다음과 같습니다.

  • 모델에게 수행할 작업에 대한 안내를 제공합니다.
  • 요청 사항을 명확하고 구체적으로 작성합니다.
  • 출력에 대한 제약조건 또는 형식 요구사항을 지정합니다.

수행할 태스크 정의

모델로 수행하려는 태스크를 자세히 설명합니다. 다음 프롬프트는 모델에 텍스트 블록을 요약하도록 지시합니다.


Summarize this text.
Text: A quantum computer exploits quantum mechanical phenomena to perform calculations exponentially
faster than any modern traditional computer. At very tiny scales, physical matter acts as both
particles and as waves, and quantum computing uses specialized hardware to leverage this behavior.
The operating principles of quantum devices is beyond the scope of classical physics. When deployed
at scale, quantum computers could be used in a wide variety of applications such as: in
cybersecurity to break existing encryption methods while helping researchers create new ones, in
meteorology to develop better weather forecasting etc. However, the current state of the art quantum
computers are still largely experimental and impractical.
  

Quantum computers utilize quantum mechanical phenomena to perform computations significantly faster
than traditional computers. By exploiting the particle-wave duality of matter at tiny scales,
quantum computers leverage specialized hardware to solve problems beyond classical physics.
Potential applications include breaking encryption, developing better weather forecasting, and more.
However, current quantum computers are still largely experimental and impractical.
  

제약조건 지정

프롬프트 읽기 또는 응답 생성에 대한 제약조건을 지정합니다. 모델에게 해야 할 일과 하지 말아야 할 일을 지시할 수 있습니다. 이전 예시의 요약은 원본 텍스트보다 짧지만 요약을 더 짧게 줄이고 싶을 수 있습니다. 이 경우 프롬프트에서 요약의 길이에 대한 제약조건을 지정할 수 있습니다.


Summarize this text in two sentences.
Text: A quantum computer exploits quantum mechanical phenomena to perform calculations exponentially
faster than any modern traditional computer. At very tiny scales, physical matter acts as both
particles and as waves, and quantum computing uses specialized hardware to leverage this behavior.
The operating principles of quantum devices is beyond the scope of classical physics. When deployed
at scale, quantum computers could be used in a wide variety of applications such as: in
cybersecurity to break existing encryption methods while helping researchers create new ones, in
meteorology to develop better weather forecasting etc. However, the current state of the art quantum
computers are still largely experimental and impractical.
    


Quantum computers use quantum mechanical phenomena to perform calculations much faster than
traditional computers. They have the potential to revolutionize various fields, but current quantum
computers are still experimental and impractical.
    

응답 형식 지정

응답 일관성과 가독성을 위해 응답 형식을 지정합니다. 예를 들어 응답을 표, 글머리기호 목록, 엘리베이터 피치, 키워드, 문장 또는 단락 형식으로 요청할 수 있습니다. 더 나은 규제 대상 출력 형식 및 상호 운용성을 위한 연결을 위해 응답 형식으로 JSON을 지정할 수 있습니다. 다음 프롬프트는 텍스트에서 주요 정보의 글머리 기호를 제공하도록 모델에 지시합니다.


Summarize this text as bullets points of key information.
Text: A quantum computer exploits quantum mechanical phenomena to perform calculations exponentially
faster than any modern traditional computer. At very tiny scales, physical matter acts as both
particles and as waves, and quantum computing uses specialized hardware to leverage this behavior.
The operating principles of quantum devices is beyond the scope of classical physics. When deployed
at scale, quantum computers could be used in a wide variety of applications such as: in
cybersecurity to break existing encryption methods while helping researchers create new ones, in
meteorology to develop better weather forecasting etc. However, the current state of the art quantum
computers are still largely experimental and impractical.
  

- Quantum computers leverage quantum mechanical phenomena for exponentially faster calculations than
  traditional computers.
- Quantum devices utilize specialized hardware to exploit tiny-scale matter behavior as both
  particles and waves.
- Their operating principles transcend classical physics.
- Potential applications include cybersecurity, weather forecasting, and more.
- Current quantum computers are largely experimental and impractical.