Locations

Google Cloud uses regions, subdivided into zones, to define the geographic location of physical computing resources. Google stores and processes your data only in the region you specify for all features of Vertex AI except for data labeling tasks and any feature in experimental or preview launch status.

Choosing your location

You can choose any supported location when you create a dataset, train a custom-trained model that does not use a managed dataset, or when you import an existing model. You should typically use the region closest to your physical location or the physical location of your intended users, but check that the Vertex AI feature you want to use is supported in your region. There is no global location.

For operations other than creating a dataset or importing a model, you must use the location of the resources you are operating on. For example, when you create a training pipeline that uses a managed dataset, you must use the region where the dataset is located.

Specifying the location using Google Cloud console

When you use Google Cloud console, you specify the location by using the location dropdown menu:

locations dropdown menu

Specifying the location using the Vertex AI API

You specify the location for a Vertex AI API request by using the appropriate regional endpoint.

For example, to make a request in the europe-west4 region, use the following endpoint:

https://europe-west4-aiplatform.googleapis.com

To make a request in the us-central1 region, use the following endpoint:

https://us-central1-aiplatform.googleapis.com

When you specify a resource, you use the name of the resource's region as the location. For example, a dataset in the us-central1 region would be specified using the following path:

projects/PROJECT/locations/us-central1/datasets/DATASET_ID

See the list of supported service endpoints.

Available locations

Vertex AI regions

Vertex AI is available in the following regions. See also Vertex AI Workbench locations.

Americas

  • Oregon (us-west1)
  • Los Angeles (us-west2)
  • Salt Lake City (us-west3)
  • Las Vegas (us-west4)
  • Iowa (us-central1)
  • South Carolina (us-east1)
  • N. Virginia (us-east4)
  • Dallas (us-south1)
  • Montréal (northamerica-northeast1)
  • Toronto (northamerica-northeast2)
  • São Paulo (southamerica-east1)

Europe

  • London (europe-west2)
  • Belgium (europe-west1)
  • Netherlands (europe-west4)
  • Zurich (europe-west6)
  • Frankfurt (europe-west3)
  • Warsaw (europe-central2)
  • Paris (europe-west9)

Asia Pacific

  • Mumbai (asia-south1)
  • Singapore (asia-southeast1)
  • Jakarta (asia-southeast2)
  • Hong Kong (asia-east2)
  • Taiwan (asia-east1)
  • Tokyo (asia-northeast1)
  • Sydney (australia-southeast1)
  • Seoul (asia-northeast3)

Middle East

  • Tel Aviv (me-west1)

Google Cloud also provides additional regions for products other than Vertex AI.

Feature availability

Some Vertex AI features are not available in all regions. The following table lists the features that are available in each region.

The following sortable table lets you select different options to see where Vertex AI features are available. For example, to see a list of regions where Vertex AI Feature Store is available in Europe, you can select Europe from the Select a location drop-down menu, and Vertex AI Feature Store from the Select a feature drop-down menu.

Region Location Features
asia-east1
Changhua County, Taiwan, Asia Pacific
  • AutoML for tabular data
  • Custom model batch predictions
  • Custom model online predictions
  • Custom model training
  • Data labeling
  • Matching Engine
  • Model Monitoring
  • Neural Architecture Search
  • Vertex AI Experiments
  • Vertex AI Feature Store
  • Vertex AI Pipelines
  • Vertex AI TensorBoard
  • Vertex AI Vizier
  • Vertex Explainable AI
  • Vertex ML Metadata
asia-east2
Hong Kong, Asia Pacific
  • AutoML for tabular data
  • Custom model batch predictions
  • Custom model online predictions
  • Custom model training
  • Matching Engine
  • Model Monitoring
  • Vertex AI Experiments
  • Vertex AI Feature Store
  • Vertex AI Pipelines
  • Vertex AI TensorBoard
  • Vertex AI Vizier
  • Vertex Explainable AI
  • Vertex ML Metadata
asia-northeast1
Tokyo, Japan, Asia Pacific
  • AutoML for tabular data
  • Custom model batch predictions
  • Custom model online predictions
  • Custom model training
  • Matching Engine
  • Model Monitoring
  • Vertex AI Experiments
  • Vertex AI Feature Store
  • Vertex AI Pipelines
  • Vertex AI TensorBoard
  • Vertex AI Vizier
  • Vertex Explainable AI
  • Vertex ML Metadata
asia-northeast3
Seoul, South Korea, Asia Pacific
  • AutoML for tabular data
  • Custom model batch predictions
  • Custom model online predictions
  • Custom model training
  • Matching Engine
  • Model Monitoring
  • Vertex AI Experiments
  • Vertex AI Feature Store
  • Vertex AI Pipelines
  • Vertex AI TensorBoard
  • Vertex AI Vizier
  • Vertex Explainable AI
  • Vertex ML Metadata
asia-south1
Mumbai, India, Asia Pacific
  • AutoML for tabular data
  • Custom model batch predictions
  • Custom model online predictions
  • Custom model training
  • Matching Engine
  • Model Monitoring
  • Vertex AI Experiments
  • Vertex AI Feature Store
  • Vertex AI Pipelines
  • Vertex AI TensorBoard
  • Vertex AI Vizier
  • Vertex Explainable AI
  • Vertex ML Metadata
asia-southeast1
Jurong West, Singapore, Asia Pacific
  • AutoML for tabular data
  • Custom model batch predictions
  • Custom model online predictions
  • Custom model training
  • Matching Engine
  • Model Monitoring
  • Neural Architecture Search
  • Vertex AI Experiments
  • Vertex AI Feature Store
  • Vertex AI Pipelines
  • Vertex AI TensorBoard
  • Vertex AI Vizier
  • Vertex Explainable AI
  • Vertex ML Metadata
asia-southeast2
Jakarta, Indonesia, Asia Pacific
  • AutoML for tabular data
  • Custom model batch predictions
  • Custom model online predictions
  • Custom model training
  • Matching Engine
  • Model Monitoring
  • Vertex AI Experiments
  • Vertex AI Feature Store
  • Vertex AI Pipelines
  • Vertex AI TensorBoard
  • Vertex AI Vizier
  • Vertex Explainable AI
  • Vertex ML Metadata
australia-southeast1
Sydney, Australia, Asia Pacific
  • AutoML for tabular data
  • Custom model batch predictions
  • Custom model online predictions
  • Custom model training
  • Matching Engine
  • Model Monitoring
  • Vertex AI Experiments
  • Vertex AI Feature Store
  • Vertex AI Pipelines
  • Vertex AI TensorBoard
  • Vertex AI Vizier
  • Vertex Explainable AI
  • Vertex ML Metadata
europe-central2
Warsaw, Poland, Europe
  • AutoML for tabular data
  • Custom model batch predictions
  • Custom model online predictions
  • Custom model training
  • Matching Engine
  • Model Monitoring
  • Vertex AI Experiments
  • Vertex AI Feature Store
  • Vertex AI Pipelines
  • Vertex AI TensorBoard
  • Vertex AI Vizier
  • Vertex Explainable AI
  • Vertex ML Metadata
europe-west1
St. Ghislain, Belgium, Europe
  • AutoML for tabular data
  • Custom model batch predictions
  • Custom model online predictions
  • Custom model training
  • Matching Engine
  • Model Monitoring
  • Neural Architecture Search
  • Vertex AI Experiments
  • Vertex AI Feature Store
  • Vertex AI Pipelines
  • Vertex AI TensorBoard
  • Vertex AI Vizier
  • Vertex Explainable AI
  • Vertex ML Metadata
europe-west2
London, England, Europe
  • AutoML for tabular data
  • Custom model batch predictions
  • Custom model online predictions
  • Custom model training
  • Data labeling
  • Matching Engine
  • Model Monitoring
  • Vertex AI Experiments
  • Vertex AI Feature Store
  • Vertex AI Pipelines
  • Vertex AI TensorBoard
  • Vertex AI Vizier
  • Vertex Explainable AI
  • Vertex ML Metadata
europe-west3
Frankfurt, Germany, Europe
  • AutoML for tabular data
  • Custom model batch predictions
  • Custom model online predictions
  • Custom model training
  • Data labeling
  • Matching Engine
  • Model Monitoring
  • Vertex AI Experiments
  • Vertex AI Feature Store
  • Vertex AI Pipelines
  • Vertex AI TensorBoard
  • Vertex AI Vizier
  • Vertex Explainable AI
  • Vertex ML Metadata
europe-west4
Eemshaven, Netherlands, Europe
  • AutoML for image data
  • AutoML for tabular data
  • AutoML for text data
  • AutoML for video data
  • Custom model batch predictions
  • Custom model online predictions
  • Custom model training
  • Data labeling
  • Model Monitoring
  • Neural Architecture Search
  • Vertex AI Experiments
  • Vertex AI Feature Store
  • Vertex AI Pipelines
  • Vertex AI TensorBoard
  • Vertex AI Vizier
  • Vertex Explainable AI
  • Vertex ML Metadata
europe-west6
Zurich, Switzerland, Europe
  • AutoML for tabular data
  • Custom model batch predictions
  • Custom model online predictions
  • Custom model training
  • Matching Engine
  • Model Monitoring
  • Vertex AI Experiments
  • Vertex AI Feature Store
  • Vertex AI Pipelines
  • Vertex AI TensorBoard
  • Vertex AI Vizier
  • Vertex Explainable AI
  • Vertex ML Metadata
europe-west9
Paris, France, Europe
  • AutoML for tabular data
  • Custom model batch predictions
  • Custom model online predictions
  • Custom model training
  • Matching Engine
  • Model Monitoring
  • Vertex AI Experiments
  • Vertex AI Feature Store
  • Vertex AI Pipelines
  • Vertex AI TensorBoard
  • Vertex AI Vizier
  • Vertex Explainable AI
  • Vertex ML Metadata
me-west1
Tel Aviv, Israel, Middle East
  • Custom model batch predictions
  • Custom model online predictions
  • Custom model training
  • Matching Engine
  • Vertex AI Experiments
  • Vertex AI Pipelines
  • Vertex AI TensorBoard
  • Vertex ML Metadata
northamerica-northeast1
Montréal, Québec, North America
  • AutoML for tabular data
  • Custom model batch predictions
  • Custom model online predictions
  • Custom model training
  • Matching Engine
  • Model Monitoring
  • Vertex AI Experiments
  • Vertex AI Feature Store
  • Vertex AI Pipelines
  • Vertex AI TensorBoard
  • Vertex AI Vizier
  • Vertex Explainable AI
  • Vertex ML Metadata
northamerica-northeast2
Toronto, Ontario, North America
  • AutoML for tabular data
  • Custom model batch predictions
  • Custom model online predictions
  • Custom model training
  • Matching Engine
  • Model Monitoring
  • Vertex AI Experiments
  • Vertex AI Feature Store
  • Vertex AI Pipelines
  • Vertex AI TensorBoard
  • Vertex AI Vizier
  • Vertex Explainable AI
  • Vertex ML Metadata
southamerica-east1
Osasco, São Paulo, Brazil, South America
  • AutoML for tabular data
  • Custom model batch predictions
  • Custom model online predictions
  • Custom model training
  • Matching Engine
  • Model Monitoring
  • Vertex AI Experiments
  • Vertex AI Feature Store
  • Vertex AI Pipelines
  • Vertex AI TensorBoard
  • Vertex AI Vizier
  • Vertex Explainable AI
  • Vertex ML Metadata
us-central1
Council Bluffs, Iowa, North America
  • AutoML for image data
  • AutoML for tabular data
  • AutoML for text data
  • AutoML for video data
  • Custom model batch predictions
  • Custom model online predictions
  • Custom model training
  • Data labeling
  • Matching Engine
  • Model Monitoring
  • Neural Architecture Search
  • Vertex AI Experiments
  • Vertex AI Feature Store
  • Vertex AI Pipelines
  • Vertex AI TensorBoard
  • Vertex AI Vizier
  • Vertex Explainable AI
  • Vertex ML Metadata
us-east1
Moncks Corner, South Carolina, North America
  • AutoML for tabular data
  • Custom model batch predictions
  • Custom model online predictions
  • Custom model training
  • Matching Engine
  • Model Monitoring
  • Neural Architecture Search
  • Vertex AI Experiments
  • Vertex AI Feature Store
  • Vertex AI Pipelines
  • Vertex AI TensorBoard
  • Vertex AI Vizier
  • Vertex Explainable AI
  • Vertex ML Metadata
us-east4
Ashburn, Virginia, North America
  • AutoML for tabular data
  • Custom model batch predictions
  • Custom model online predictions
  • Custom model training
  • Matching Engine
  • Model Monitoring
  • Neural Architecture Search
  • Vertex AI Experiments
  • Vertex AI Feature Store
  • Vertex AI Pipelines
  • Vertex AI TensorBoard
  • Vertex AI Vizier
  • Vertex Explainable AI
  • Vertex ML Metadata
us-south1
Dallas, Texas, North America
  • Custom model batch predictions
  • Custom model online predictions
  • Custom model training
  • Matching Engine
  • Vertex AI Experiments
  • Vertex AI Pipelines
  • Vertex AI TensorBoard
  • Vertex ML Metadata
us-west1
The Dalles, Oregon, North America
  • AutoML for tabular data
  • Custom model batch predictions
  • Custom model online predictions
  • Custom model training
  • Matching Engine
  • Model Monitoring
  • Neural Architecture Search
  • Vertex AI Experiments
  • Vertex AI Feature Store
  • Vertex AI Pipelines
  • Vertex AI TensorBoard
  • Vertex AI Vizier
  • Vertex Explainable AI
  • Vertex ML Metadata
us-west2
Los Angeles, California, North America
  • AutoML for tabular data
  • Custom model batch predictions
  • Custom model online predictions
  • Custom model training
  • Matching Engine
  • Model Monitoring
  • Vertex AI Experiments
  • Vertex AI Feature Store
  • Vertex AI Pipelines
  • Vertex AI TensorBoard
  • Vertex AI Vizier
  • Vertex Explainable AI
  • Vertex ML Metadata
us-west3
Salt Lake City, Utah, North America
  • Custom model batch predictions
  • Custom model online predictions
  • Custom model training
  • Matching Engine
  • Model Monitoring
  • Vertex AI Experiments
  • Vertex AI Feature Store
  • Vertex AI Pipelines
  • Vertex AI TensorBoard
  • Vertex ML Metadata
us-west4
Las Vegas, Nevada, North America
  • AutoML for tabular data
  • Custom model batch predictions
  • Custom model online predictions
  • Custom model training
  • Matching Engine
  • Model Monitoring
  • Vertex AI Experiments
  • Vertex AI Feature Store
  • Vertex AI Pipelines
  • Vertex AI TensorBoard
  • Vertex AI Vizier
  • Vertex Explainable AI
  • Vertex ML Metadata

Vertex AI Workbench locations

Managed notebooks regions

Managed notebooks are available in the following regions.

Region description Zone name
Americas
Oregon us-west1
Las Vegas us-west4
Iowa us-central1
Montréal northamerica-northeast1
São Paulo southamerica-east1
Europe
Belgium europe-west1
Netherlands europe-west4
Asia Pacific
Mumbai asia-south1
Singapore asia-southeast1
Hong Kong asia-east2
Tokyo asia-northeast1
Sydney australia-southeast1
Seoul asia-northeast3

User-managed notebooks locations

User-managed notebooks are available in the following zones.

Region description Zone name
Americas
Oregon us-west1-a
us-west1-b
us-west1-c
Los Angeles us-west2-a
us-west2-b
us-west2-c
Las Vegas us-west4-a
us-west4-b
us-west4-c
Iowa us-central1-a
us-central1-b
us-central1-c
South Carolina us-east1-b
us-east1-c
us-east1-d
Northern Virginia us-east4-a
us-east4-b
us-east4-c
Montréal northamerica-northeast1-a
northamerica-northeast1-b
northamerica-northeast1-c
São Paulo southamerica-east1-a
southamerica-east1-b
southamerica-east1-c
Europe
London europe-west2-a
europe-west2-b
europe-west2-c
Belgium europe-west1-b
europe-west1-c
europe-west1-d
Netherlands europe-west4-a
europe-west4-b
europe-west4-c
Zürich europe-west6-a
europe-west6-b
europe-west6-c
Frankfurt europe-west3-a
europe-west3-b
europe-west3-c
Asia Pacific
Mumbai asia-south1-a
asia-south1-b
asia-south1-c
Singapore asia-southeast1-a
asia-southeast1-b
asia-southeast1-c
Jakarta asia-southeast2-a
asia-southeast2-b
asia-southeast2-c
Hong Kong asia-east2-a
asia-east2-b
asia-east2-c
Taiwan asia-east1-a
asia-east1-b
asia-east1-c
Tokyo asia-northeast1-a
asia-northeast1-b
asia-northeast1-c
Sydney australia-southeast1-a
australia-southeast1-b
australia-southeast1-c
Seoul asia-northeast3-a
asia-northeast3-b
asia-northeast3-c

Region considerations

Using accelerators

Accelerators are available on a region basis. The following table lists all the available accelerators for each region.

You can search either by location or GPU model, or a combination of both.

Zones Location Accelerators
asia-east1 Changhua County, Taiwan, Asia Pacific K80, P100, T4, V100, TPU V2*
asia-northeast1 Tokyo, Japan, Asia Pacific A100 40GB, T4, V100*
asia-northeast3 Seoul, South Korea, Asia Pacific A100 40GB, T4, V100*
asia-south1 Mumbai, India, Asia Pacific T4, V100*
asia-southeast1 Jurong West, Singapore, Asia Pacific A100 80GB* (Preview), A100 40GB, P4, T4, V100*
australia-southeast1 Sydney, Australia, Asia Pacific P4, T4
europe-west1 St. Ghislain, Belgium, Europe K80, P100, T4
europe-west2 London, England, Europe T4
europe-west3 Frankfurt, Germany, Europe T4*
europe-west4 Eemshaven, Netherlands, Europe L4, A100 40GB, A100 80GB* (Preview), P4, T4, V100, TPU V2*, TPU V2 Pod*, TPU V3*, TPU V3 Pod*
northamerica-northeast1 Montréal, Québec, North America P4
southamerica-east1 Osasco, São Paulo, Brazil, South America T4
us-central1 Council Bluffs, Iowa, North America L4, A100 80GB* (Preview), A100 40GB, K80, P4, P100, T4, V100, TPU V2*, TPU V2 Pod*, TPU V3*
us-east1 Moncks Corner, South Carolina, North America K80, P100, T4, V100*, TPU V3*
us-east4 Ashburn, Virginia, North America A100 80GB* (Preview), P4
us-west1 The Dalles, Oregon, North America P100, T4, V100
us-west2 Los Angeles, California, North America P4, T4
us-west4 Las Vegas, Nevada, North America T4

* Cells marked with asterisks represent regions where the specified accelerator is available for training but not for serving batch or online predictions.

Cells marked with daggers represent regions where the specified accelerator is available for serving batch or online predictions but not for training.

If your job uses multiple types of GPUs, they must all be available in a single zone in your region. For example, you can't run a job in us-central1 using NVIDIA Tesla T4 GPUs, NVIDIA Tesla K80 GPUs, and NVIDIA Tesla P100 GPUs. While all of these GPUs are available for jobs in us-central1, no single zone in that region provides all three types of GPU. To learn more about the zone availability of GPUs, see the comparison of GPUs for compute workloads.

BigQuery location requirements

When you use a BigQuery table as a source for a managed tabular dataset or tabular prediction data, it must conform to the following location requirements:

Americas

  • BigQuery tables can be either multi-regional (US) or regional (us-central1).

  • BigQuery views must be regional (us-central1).

  • If the table or view is not in the same project that the Vertex AI job is running in, make sure that Vertex AI has the correct roles.

Europe

  • BigQuery tables and views must be regional (europe-west4).

  • Location: The region that your Vertex AI job runs in, such as us-central1, europe-west4, or asia-east1.

  • If the table or view is not in the same project that the Vertex AI job is running in, make sure that Vertex AI has the correct roles.

Cloud Storage bucket requirements

Some Vertex AI tasks, such as importing data, use a Cloud Storage bucket.

  • We recommend that you use the following settings when creating a Cloud Storage bucket to use with Vertex AI:

    • Location type: Region.
    • Location: The region where you are using Vertex AI; for example, us-central1, europe-west4, or asia-east1.
    • Storage class: Standard.

    These settings are not strict requirements, but using these settings often improves performance. For example, it's possible to use a bucket in a multi-region with Vertex AI, but loading data from a bucket in the same region as your Vertex AI resource might reduce latency.

  • If the bucket is not in the same project that the Vertex AI job is running in, make sure Vertex AI has the correct roles.

Restricting resource locations

Organization policy administrators can restrict the regions available where you can use Vertex AI by creating a resource locations constraint. Read about how a resource locations constraint applies to Vertex AI

Resource locations constraints don't apply to DataLabelingJob resources.